/* * Copyright (C) 2020, University of the Basque Country (UPV/EHU) * Contact for licensing options: * * The original file was part of Open Source Doubango Framework * Copyright (C) 2010-2011 Mamadou Diop. * Copyright (C) 2012 Doubango Telecom * * This file is part of Open Source Doubango Framework. * * DOUBANGO is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * DOUBANGO is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with DOUBANGO. * */ /**@file tsip_milenage.h * @brief 3GPP authentication and key agreement functions f1, f1*, f2, f3, f4, f5 and f5*. * * @section DESCRIPTION * * @sa 3G Security * 3GPP TS 35.205 * 3GPP TS 35.206 * 3GPP TS 35.207 * 3GPP TS 35.208 * 3GPP TS 35.909 *------------------------------------------------------------------- * Example algorithms f1, f1*, f2, f3, f4, f5, f5* *------------------------------------------------------------------- * * A sample implementation of the example 3GPP authentication and * key agreement functions f1, f1*, f2, f3, f4, f5 and f5*. This is * a byte-oriented implementation of the functions, and of the block * cipher kernel function Rijndael. * * This has been coded for clarity, not necessarily for efficiency. * * The functions f2, f3, f4 and f5 share the same inputs and have * been coded together as a single function. f1, f1* and f5* are * all coded separately. * *----------------------------------------------------------------- * * @author Mamadou Diop * */ #ifndef TINYSIP_AUTHENTICATION_MILENAGE_H #define TINYSIP_AUTHENTICATION_MILENAGE_H #include "tinysip_config.h" /**@def AKA_AK_SIZE * a 48-bit anonymity key that is the output of either of the functions f5 and f5*. * Defined in 3GPP TS 35.206 subclause 2.3. */ TSIP_BEGIN_DECLS #define AKA_AK_SIZE 6 typedef uint8_t AKA_AK_T[AKA_AK_SIZE + 1]; /**@def AKA_AMF_SIZE * 16-bit authentication management field that is an input to the functions f1 and f1*. * Defined in 3GPP TS 35.206 subclause 2.3. */ #define AKA_AMF_SIZE 2 typedef uint8_t AKA_AMF_T[AKA_AMF_SIZE + 1]; /**@def AKA_CK_SIZE * a 128-bit confidentiality key that is the output of the function f3. * Defined in 3GPP TS 35.206 subclause 2.3. */ #define AKA_CK_SIZE 16 typedef uint8_t AKA_CK_T[AKA_CK_SIZE + 1]; /**@def AKA_IK_SIZE * a 128-bit integrity key that is the output of the function f4. * Defined in 3GPP TS 35.206 subclause 2.3. */ #define AKA_IK_SIZE 16 typedef uint8_t AKA_IK_T[AKA_IK_SIZE + 1]; /**@def AKA_K_SIZE * a 128-bit subscriber key that is an input to the functions f1, f1*, f2, f3, f4, f5 and f5*. * Defined in 3GPP TS 35.206 subclause 2.3. */ #define AKA_K_SIZE 16 typedef uint8_t AKA_K_T[AKA_K_SIZE + 1]; /**@def AKA_MAC_A_SIZE * a 64-bit network authentication code that is the output of the function f1. * Defined in 3GPP TS 35.206 subclause 2.3. */ #define AKA_MAC_A_SIZE 8 typedef uint8_t AKA_MAC_A_T[AKA_MAC_A_SIZE + 1]; /**@def AKA_MAC_S_SIZE * a 64-bit network authentication code that is the output of the function f1*. * Defined in 3GPP TS 35.206 subclause 2.3. */ #define AKA_MAC_S_SIZE 8 typedef uint8_t AKA_MAC_S_T[AKA_MAC_S_SIZE + 1]; /**@def AKA_OP_SIZE * a 128-bit Operator Variant Algorithm Configuration Field that is a component of the functions f1, f1*, f2, f3, f4, f5 and f5*. * Defined in 3GPP TS 35.206 subclause 2.3. */ #define AKA_OP_SIZE 16 typedef uint8_t AKA_OP_T[AKA_OP_SIZE + 1]; /**@def AKA_OPC_SIZE * a 128-bit value derived from OP and K and used within the computation of the functions. * Defined in 3GPP TS 35.206 subclause 2.3. */ #define AKA_OPC_SIZE 16 typedef uint8_t AKA_OPC_T[AKA_OPC_SIZE + 1]; /**@def AKA_RAND_SIZE * a 128-bit random challenge that is an input to the functions f1, f1*, f2, f3, f4, f5 and f5*. * Defined in 3GPP TS 35.206 subclause 2.3. */ #define AKA_RAND_SIZE 16 typedef uint8_t AKA_RAND_T[AKA_RAND_SIZE + 1]; /**@def AKA_RES_SIZE * a 64-bit signed response that is the output of the function f2. * Defined in 3GPP TS 35.206 subclause 2.3. */ #define AKA_RES_SIZE 8 typedef uint8_t AKA_RES_T[AKA_RES_SIZE + 1]; /**@def AKA_SQN_SIZE * a 48-bit sequence number that is an input to either of the functions f1 and f1*. (For f1* this input is more precisely called SQNMS.) * Defined in 3GPP TS 35.206 subclause 2.3. */ #define AKA_SQN_SIZE 6 typedef uint8_t AKA_SQN_T[AKA_SQN_SIZE + 1]; /**@def AKA_TEMP_SIZE * a 128-bit value used within the computation of the functions. * Defined in 3GPP TS 35.206 subclause 2.3. */ #define AKA_TEMP_SIZE 16 typedef uint8_t AKA_TEMP_T[AKA_TEMP_SIZE + 1]; /**@def AKA_AUTS_SIZE * Authentication Token. A 112 bit value generated by the client upon experiencing an SQN synchronization failure. * Defined in RFC 3310 subclause 3.4 */ #define AKA_AUTS_SIZE 14 typedef uint8_t AKA_AUTS_T[AKA_AUTS_SIZE + 1]; /**@def AKA_AUTN_SIZE * Authentication Token. A 128 bit value generated by the AuC, which together with the RAND parameter authenticates the server to the client. * Defined in RFC 3310 subclause 3.4 */ #define AKA_AUTN_SIZE 16 typedef uint8_t AKA_AUTN_T[AKA_AUTN_SIZE + 1]; #define AKA_XXX_DECLARE(name) AKA_##name##_T name #define AKA_XXX_BZERO(name) memset(name, '\0', AKA_##name##_SIZE + 1) void f1 ( uint8_t k[16], uint8_t rand[16], uint8_t sqn[6], uint8_t amf[2], uint8_t mac_a[8] ); void f2345 ( uint8_t k[16], uint8_t rand[16], uint8_t res[8], uint8_t ck[16], uint8_t ik[16], uint8_t ak[6] ); void f1star( uint8_t k[16], uint8_t rand[16], uint8_t sqn[6], uint8_t amf[2], uint8_t mac_s[8] ); void f5star( uint8_t k[16], uint8_t rand[16], uint8_t ak[6] ); void ComputeOPc( uint8_t op_c[16] ); void ComputeOP( uint8_t op[16] ); TSIP_END_DECLS #endif /* TINYSIP_AUTHENTICATION_MILENAGE_H */