c732d49e |
#if HAVE_CRT
#define _CRTDBG_MAP_ALLOC
#include <stdlib.h>
#include <crtdbg.h>
#endif //HAVE_CRT
/*
* Copyright (C) 2017, University of the Basque Country (UPV/EHU)
* Contact for licensing options: <licensing-mcpttclient(at)mcopenplatform(dot)com>
*
* The original file was part of Open Source Doubango Framework
* Copyright (C) 2010-2011 Mamadou Diop.
* Copyright (C) 2012 Doubango Telecom <http://doubango.org>
*
* This file is part of Open Source Doubango Framework.
*
* DOUBANGO is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* DOUBANGO is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with DOUBANGO.
*
*/
/**@file tcomp_udvm.operands.c
* @brief SigComp UDVM machine (Operands).
*
* @author Mamadou Diop <diopmamadou(at)yahoo.fr>
*
*/
#include "tcomp_udvm.h"
#include "tsk_debug.h"
#include <math.h>
/**
literal (#)<br>
<table>
<tr> <td>Bytecode</td> <td>Operand value</td> <td>Range</td></tr>
<tr> <td>0nnnnnnn</td> <td>N</td> <td>0 - 127</td></tr>
<tr> <td>10nnnnnn nnnnnnnn</td> <td>N</td> <td>0 - 16383</td></tr>
<tr> <td>11000000 nnnnnnnn nnnnnnnn</td> <td>N</td> <td>0 - 65535</td></tr>
</table>
*/
uint32_t tcomp_udvm_opget_literal_param(tcomp_udvm_t *udvm)
{
uint32_t result = 0;
const uint8_t* memory_ptr = TCOMP_UDVM_GET_BUFFER_AT(udvm->executionPointer);
switch( *memory_ptr & 0xc0) // 2 first bits
{
case 0x00: // 0nnnnnnn N 0 - 127
case 0x40: // 0nnnnnnn N 0 - 127
{
result = *(memory_ptr);
udvm->executionPointer++;
}
break;
case 0x80: // 10nnnnnn nnnnnnnn N 0 - 16383
{
result = TSK_BINARY_GET_2BYTES(memory_ptr)&0x3fff; // All except 2 first bits
udvm->executionPointer+=2;
}
break;
case 0xc0: // 11000000 nnnnnnnn nnnnnnnn N 0 - 65535
{
result = TSK_BINARY_GET_2BYTES((memory_ptr+1));
udvm->executionPointer+=3;
}
break;
default:
{
TSK_DEBUG_ERROR("Invalide opcode: %u", *memory_ptr);
tcomp_udvm_createNackInfo2(udvm, NACK_INVALID_OPERAND);
}
break;
}
return result;
}
/**
reference ($)<br>
<table>
<tr><td>Bytecode</td> <td>Operand value</td> <td>Range</td></tr>
<tr><td>0nnnnnnn</td> <td>memory[2 * N]</td> <td>0 - 65535</td></tr>
<tr><td>10nnnnnn nnnnnnnn </td> <td>memory[2 * N]</td> <td>0 - 65535</td></tr>
<tr><td>11000000 nnnnnnnn nnnnnnnn</td> <td>memory[N]</td> <td>0 - 65535</td></tr>
</table>
*/
uint32_t tcomp_udvm_opget_reference_param(tcomp_udvm_t *udvm)
{
const uint8_t* memory_ptr = TCOMP_UDVM_GET_BUFFER_AT(udvm->executionPointer);
uint32_t result = 0;
switch( *memory_ptr & 0xc0) // 2 first bits
{
case 0x00: // 0nnnnnnn memory[2 * N] 0 - 65535
case 0x40: // 0nnnnnnn memory[2 * N] 0 - 65535
{
uint8_t N = (*(memory_ptr) & 0x7f); // no effect first bit is already nil
result = 2*N;
udvm->executionPointer++;
}
break;
case 0x80: // 10nnnnnn nnnnnnnn memory[2 * N] 0 - 65535
{
uint32_t N = (TSK_BINARY_GET_2BYTES(memory_ptr) & 0x3fff);
result = 2*N;
udvm->executionPointer+=2;
}
break;
case 0xc0: // 11000000 nnnnnnnn nnnnnnnn memory[N] 0 - 65535
{
uint32_t N = TSK_BINARY_GET_2BYTES(memory_ptr+1);
result = N;
udvm->executionPointer+=3;
}
break;
default:
{
TSK_DEBUG_ERROR("Invalide opcode: %u", *memory_ptr);
tcomp_udvm_createNackInfo2(udvm, NACK_INVALID_OPERAND);
}
break;
}
return result;
}
/**
multitype(%)<br>
<table>
<tr><td>Bytecode</td> <td>Operand value</td> <td>Range</td></tr>
<tr><td>00nnnnnn</td> <td>N</td> <td>0 - 63</td></tr>
<tr><td>01nnnnnn</td> <td>memory[2 * N]</td> <td>0 - 65535</td></tr>
<tr><td>1000011n</td> <td>2 ^ (N + 6)</td> <td>64 , 128</td></tr>
<tr><td>10001nnn</td> <td>2 ^ (N + 8)</td> <td>256 , ... , 32768</td></tr>
<tr><td>111nnnnn</td> <td>N + 65504</td> <td>65504 - 65535</td></tr>
<tr><td>1001nnnn nnnnnnnn</td> <td>N + 61440</td> <td>61440 - 65535</td></tr>
<tr><td>101nnnnn nnnnnnnn</td> <td>N</td> <td>0 - 8191</td></tr>
<tr><td>110nnnnn nnnnnnnn</td> <td>memory[N]</td> <td>0 - 65535</td></tr>
<tr><td>10000000 nnnnnnnn nnnnnnnn</td> <td>N</td> <td>0 - 65535</td></tr>
<tr><td>10000001 nnnnnnnn nnnnnnnn</td> <td>memory[N]</td> <td>0 - 65535</td></tr>
</table>
*/
uint32_t tcomp_udvm_opget_multitype_param(tcomp_udvm_t *udvm)
{
const uint8_t* memory_ptr = TCOMP_UDVM_GET_BUFFER_AT(udvm->executionPointer);
int8_t index = operand_multitype_indexes[*memory_ptr];
uint32_t result = 0;
switch(index)
{
case 1: // 00nnnnnn N 0 - 63
{
result = *(memory_ptr);
udvm->executionPointer++;
}
break;
case 2: // 01nnnnnn memory[2 * N] 0 - 65535
{
uint8_t N = (*(memory_ptr) & 0x3f);
result = TSK_BINARY_GET_2BYTES( TCOMP_UDVM_GET_BUFFER_AT(2*N) );
udvm->executionPointer++;
}
break;
case 3: // 1000011n 2 ^ (N + 6) 64 , 128
{
uint8_t N = (*(memory_ptr) & 0x01);
result = (uint32_t)pow( (double)2, (N + 6) );
udvm->executionPointer++;
}
break;
case 4: // 10001nnn 2 ^ (N + 8) 256 , ... , 32768
{
uint8_t N = (*(memory_ptr) & 0x07);
result = (uint32_t)pow( (double)2, (N + 8) );
udvm->executionPointer++;
}
break;
case 5: // 111nnnnn N + 65504 65504 - 65535
{
result = ((*(memory_ptr) & 0x1f) + 65504 );
udvm->executionPointer++;
}
break;
case 6: // 1001nnnn nnnnnnnn N + 61440 61440 - 65535
{
result = (TSK_BINARY_GET_2BYTES(memory_ptr) & 0x0fff) + 61440;
udvm->executionPointer+=2;
}
break;
case 7: // 101nnnnn nnnnnnnn N 0 - 8191
{
result = (TSK_BINARY_GET_2BYTES(memory_ptr) & 0x1fff);
udvm->executionPointer+=2;
}
break;
case 8: // 110nnnnn nnnnnnnn memory[N] 0 - 65535
{
uint32_t N = TSK_BINARY_GET_2BYTES(memory_ptr) & 0x1fff;
result = TSK_BINARY_GET_2BYTES( TCOMP_UDVM_GET_BUFFER_AT(N) );
udvm->executionPointer+=2;
}
break;
case 9: // 10000000 nnnnnnnn nnnnnnnn N 0 - 65535
{
result = TSK_BINARY_GET_2BYTES(memory_ptr+1);
udvm->executionPointer+=3;
}
break;
case 10: // 10000001 nnnnnnnn nnnnnnnn memory[N] 0 - 65535
{
uint32_t N = TSK_BINARY_GET_2BYTES(memory_ptr+1);
result = TSK_BINARY_GET_2BYTES( TCOMP_UDVM_GET_BUFFER_AT(N) );
udvm->executionPointer+=3;
}
break;
default: // -1
{
TSK_DEBUG_ERROR("Invalide opcode: %u", *memory_ptr);
tcomp_udvm_createNackInfo2(udvm, NACK_INVALID_OPERAND);
}
break;
}
return result;
}
/**
address(@)
This operand is decoded as a multitype operand followed by a further step: the memory address
of the UDVM instruction containing the address operand is added to
obtain the correct operand value. So if the operand value from
Figure 10 is D then the actual operand value of an address is
calculated as follows:
operand_value = (memory_address_of_instruction + D) modulo 2^16
*/
uint32_t tcomp_udvm_opget_address_param(tcomp_udvm_t *udvm, uint32_t memory_address_of_instruction)
{
uint32_t D = tcomp_udvm_opget_multitype_param(udvm);
// (2^16) => 65536;
return ( (memory_address_of_instruction + D)%65536 );
} |