c732d49e |
#if HAVE_CRT
#define _CRTDBG_MAP_ALLOC
#include <stdlib.h>
#include <crtdbg.h>
#endif //HAVE_CRT
/*
* Copyright (C) 2017, University of the Basque Country (UPV/EHU)
* Contact for licensing options: <licensing-mcpttclient(at)mcopenplatform(dot)com>
*
* The original file was part of Open Source Doubango Framework
* Copyright (C) 2010-2011 Mamadou Diop.
* Copyright (C) 2012 Doubango Telecom <http://doubango.org>
*
* This file is part of Open Source Doubango Framework.
*
* DOUBANGO is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* DOUBANGO is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with DOUBANGO.
*
*/
/**@file tcomp_udvm.instructions.c
* @brief SigComp UDVM machine (Instructions).
*
* @author Mamadou Diop <diopmamadou(at)yahoo.fr>
*
*/
#include "tcomp_udvm.h"
#include "tsk_memory.h"
#include "tsk_debug.h"
#include "tsk_ppfcs16.h"
#include <string.h> /* memcpy */
#include <stdlib.h> /* qsort */
#include <math.h> /* ceil, log ... */
/*
* IMPORTANT: MSBs are stored before LSBs in the UDVM memory --> BIG ENDIAN
*/
#define F_BIT_MSB_TO_LSB 0
#define F_BIT_LSB_TO_MSB 1
#define H_BIT_MSB_TO_LSB F_BIT_MSB_TO_LSB
#define H_BIT_LSB_TO_MSB F_BIT_LSB_TO_MSB
#define CEILLINGLOG2(x) ceil( (log((double)x)/log(2.0)) )
/*
* Consume cycles
*/
#define CONSUME_CYCLES(cycles) \
udvm->consumed_cycles += (uint64_t)(cycles); \
if( udvm->consumed_cycles > udvm->maximum_UDVM_cycles ) \
{ \
TSK_DEBUG_ERROR("%s (%llu > %llu)", TCOMP_NACK_DESCRIPTIONS[NACK_CYCLES_EXHAUSTED].desc, udvm->consumed_cycles, udvm->maximum_UDVM_cycles); \
tcomp_udvm_createNackInfo2(udvm, NACK_CYCLES_EXHAUSTED); \
return tsk_false; \
}
#define SET_2BYTES_VAL(position, value) \
if(((position) + 1) >= TCOMP_UDVM_GET_SIZE()) \
{ \
TSK_DEBUG_ERROR("%s (%u > %u)", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc, ((position) + 1), TCOMP_UDVM_GET_SIZE()); \
tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT); \
return tsk_false; \
}\
TCOMP_UDVM_SET_2BYTES_VAL(position, value);\
#define GET_2BYTES_VAL(position, ret_val) \
if(((position) + 1) >= TCOMP_UDVM_GET_SIZE()) \
{ \
TSK_DEBUG_ERROR("%s (%u > %u)", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc, ((position) + 1), TCOMP_UDVM_GET_SIZE()); \
tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT); \
return tsk_false; \
}\
ret_val = TCOMP_UDVM_GET_2BYTES_VAL((position));
/**
This structure is used to keep index-value pairs after sorting.
*/
typedef struct IndexValuePair_s
{
uint16_t index;
uint16_t value;
}
IndexValuePair_t;
////////////////////////////////////////////////////////////////////////////////////////////////////
/// @brief Predicate to sort integers in ascending order.
///
/// @param [in,out] a First integer.
/// @param [in,out] b Second integer.
///
/// @retval Zero if @a a == @a b; negative if @a a < @a b and positive otherwise..
////////////////////////////////////////////////////////////////////////////////////////////////////
static int SortAscendingPredicate(const void *a, const void *b)
{
const IndexValuePair_t *el1 = a;
const IndexValuePair_t *el2 = b;
/* If values are equal the original ordering of the integers must be preserved
* ==> We cannot use normal comparaison because the ANSI C implementation of qsort could swap values even if they are equal.
*/
return (el2->value == el1->value) ? (el1->index - el2->index) : (el1->value - el2->value);
}
/**
* Sort Descending predicate.
*/
////////////////////////////////////////////////////////////////////////////////////////////////////
///
/// @brief Predicate to sort integers in descending order.
/// @param [in,out] a First integer.
/// @param [in,out] b Second integer.
///
/// @retval Zero if @a a == @a b; negative if @a a > @a b and positive otherwise.
////////////////////////////////////////////////////////////////////////////////////////////////////
static int SortDescendingPredicate(const void *a, const void *b)
{
const IndexValuePair_t *el1 = a;
const IndexValuePair_t *el2 = b;
/* If values are equal the original ordering of the integers must be preserved.
* ==> We cannot use normal comparaison because the ANSI C implementation of qsort could swap values even if they are equal.
*/
return (el2->value == el1->value) ? (el1->index - el2->index) : (el2->value - el1->value);
};
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief DECOMPRESSION-FAILURE
/// Reference: RFC3320 Section 9.4.1
/// This instruction triggers a manual decompression failure. This is useful if the UDVM bytecode discovers that it
/// cannot successfully decompress the message (e.g., by using the CRC instruction).
/// @param [in,out] udvm The udvm state machine entity.
///
/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__DECOMPRESSION_FAILURE(tcomp_udvm_t *udvm)
{
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_USER_REQUESTED].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_USER_REQUESTED);
return tsk_false;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief AND ($operand_1, %operand_2)
/// Reference: RFC3320 Section 9.1.1
/// Formula: [operand_1 := operand_1 & operand_2].
/// @param [in,out] udvm The udvm state machine entity.
/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by
/// this operand is overwritten with the result.
/// @param operand_2 The second operand.
///
/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__AND(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2)
{
uint16_t _2bytes;
CONSUME_CYCLES(1);
GET_2BYTES_VAL(operand_1, _2bytes);
SET_2BYTES_VAL( operand_1, (_2bytes & operand_2) );
return tsk_true;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief OR ($operand_1, %operand_2)
/// Reference: RFC3320 Section 9.1.1
/// Formula: [operand_1 := operand_1 | operand_2].
/// @param [in,out] udvm The udvm state machine entity.
/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by
/// this operand is overwritten with the result.
/// @param operand_2 The second operand.
///
/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__OR(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2)
{
uint16_t _2bytes;
CONSUME_CYCLES(1);
GET_2BYTES_VAL(operand_1, _2bytes);
SET_2BYTES_VAL( operand_1, (_2bytes | operand_2) );
return tsk_true;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>NOT ($operand_1)</i><br><br>
/// Reference: RFC3320 Section 9.1.1<br>
/// Formula: [operand_1 := ~operand_1]. <br>
/// @param [in,out] udvm The udvm state machine entity.
/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by
/// this operand is overwritten with the result.
///
/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__NOT(tcomp_udvm_t *udvm, uint32_t operand_1)
{
uint16_t _2bytes;
CONSUME_CYCLES(1);
GET_2BYTES_VAL(operand_1, _2bytes);
SET_2BYTES_VAL( operand_1, ~( _2bytes ) );
return tsk_true;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>LSHIFT ($operand_1, %operand_2)</i><br><br>
/// Reference: RFC3320 Section 9.1.1<br>
/// Formula: [LSHIFT (m, n) := m * 2^n (modulo 2^16)]. <br>
/// @param [in,out] udvm The udvm state machine entity.
/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by
/// this operand is overwritten with the result.
/// @param operand_2 2-byte value encoded by the operand.
///
/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__LSHIFT(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2)
{
uint16_t _2bytes;
CONSUME_CYCLES(1);
// (m * 2^n) == (m<<n)
// (2^16) === 65536
GET_2BYTES_VAL(operand_1, _2bytes);
SET_2BYTES_VAL( operand_1, (_2bytes << operand_2) );
return tsk_true;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>RSHIFT ($operand_1, %operand_2)</i><br><br>
/// Reference: RFC3320 Section 9.1.1<br>
/// Formula: [RSHIFT (m, n) := floor(m / 2^n)]. <br>
/// @param [in,out] udvm The udvm state machine entity.
/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by
// this operand is overwritten with the result.
/// @param operand_2 2-byte value encoded by the operand.
///
/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__RSHIFT(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2)
{
uint16_t _2bytes;
CONSUME_CYCLES(1);
// floor(m / 2^n) == (m>>n)
GET_2BYTES_VAL(operand_1, _2bytes);
SET_2BYTES_VAL(operand_1, (_2bytes >> operand_2) );
return tsk_true;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>ADD ($operand_1, %operand_2)</i><br><br>
/// Reference: RFC3320 Section 9.1.2<br>
/// Formula: [ADD (m, n) := m + n (modulo 2^16)]<br>
///
///
/// @param [in,out] udvm The udvm state machine entity.
/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by
/// this operand is overwritten with the result.
/// @param operand_2 2-byte value encoded by the operand.
///
/// @retval True if succeed, otherwise return false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__ADD(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2)
{
uint16_t _2bytes;
CONSUME_CYCLES(1);
GET_2BYTES_VAL(operand_1, _2bytes);
SET_2BYTES_VAL(operand_1, (_2bytes + operand_2) );
return tsk_true;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>SUBTRACT ($operand_1, %operand_2)</i><br><br>
/// Reference: RFC3320 Section 9.1.2<br>
/// Formula: [SUBTRACT (m, n) := m - n (modulo 2^16)]<br>
///
/// @param [in,out] udvm The udvm state machine entity.
/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by
/// this operand is overwritten with the result.
/// @param operand_2 2-byte value encoded by the operand.
///
/// @retval 1 if succeed, otherwise returns 0.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__SUBTRACT(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2)
{
uint16_t _2bytes;
CONSUME_CYCLES(1);
GET_2BYTES_VAL(operand_1, _2bytes);
SET_2BYTES_VAL(operand_1, (_2bytes - operand_2) );
return tsk_true;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>MULTIPLY ($operand_1, %operand_2)</i><br><br>
/// Reference: RFC3320 Section 9.1.2<br>
/// Formula: [MULTIPLY (m, n) := m * n (modulo 2^16)]<br>
///
/// @param [in,out] udvm The udvm state machine entity.
/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by
/// this operand is overwritten with the result.
/// @param operand_2 2-byte value encoded by the operand.
///
/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__MULTIPLY(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2)
{
uint16_t _2bytes;
CONSUME_CYCLES(1);
GET_2BYTES_VAL(operand_1, _2bytes);
SET_2BYTES_VAL(operand_1, (_2bytes * operand_2) );
return tsk_true;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>DIVIDE ($operand_1, %operand_2)</i><br><br>
/// Reference: RFC3320 Section 9.1.2<br>
/// Formula: [DIVIDE (m, n) := floor(m / n)]<br>
///
///
/// @param [in,out] udvm The udvm state machine entity.
/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by
/// this operand is overwritten with the result.
/// @param operand_2 2-byte value encoded by the operand. Decompression failure occurs if this operand is zero.
///
/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__DIVIDE(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2)
{
uint16_t _2bytes;
CONSUME_CYCLES(1);
if(!operand_2){
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_DIV_BY_ZERO].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_DIV_BY_ZERO);
return tsk_false;
}
GET_2BYTES_VAL(operand_1, _2bytes);
SET_2BYTES_VAL(operand_1, (_2bytes / operand_2) );
return tsk_true;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>REMAINDER ($operand_1, %operand_2)</i><br><br>
/// Reference: RFC3320 Section 9.1.2<br>
/// Formula: [REMAINDER (m, n) := m - n * floor(m / n)]<br>
///
///
/// @param [in,out] udvm The udvm state machine entity.
/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by
/// this operand is overwritten with the result.
/// @param operand_2 2-byte value encoded by the operand. Decompression failure occurs if this operand is zero.
///
/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__REMAINDER(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2)
{
uint16_t _2bytes;
CONSUME_CYCLES(1);
if(!operand_2){
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_DIV_BY_ZERO].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_DIV_BY_ZERO);
return tsk_false;
}
GET_2BYTES_VAL(operand_1, _2bytes);
SET_2BYTES_VAL(operand_1, (_2bytes % operand_2) );
return tsk_true;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>SORT-ASCENDING (%start, %n, %k)</i><br><br>
/// Reference: RFC3320 Section 9.1.3<br>
///
/// This instruction sort lists of 2-byte words in ascending order.
///
/// @param [in,out] udvm The udvm state machine entity.
/// @param start The starting memory address of the block of data to be sorted.
/// @param n Number of lists.
/// @param k Lists length (2-byte words).
///
/// @retval True if succeed, otherwise return false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__SORT_ASCENDING(tcomp_udvm_t *udvm, uint32_t start, uint32_t n, uint32_t k)
{
tsk_bool_t segfault = tsk_false;
uint16_t* list_temp = tsk_null;
IndexValuePair_t *list1_values = tsk_null;
uint32_t list_index, list_el;
uint32_t j, pos;
CONSUME_CYCLES(( 1 + k *(CEILLINGLOG2(k) + n) )); /* 1 + k * (ceiling(log2(k)) + n) */
if(TCOMP_UDVM_GET_SIZE() <= (tsk_size_t)(start+(n*k*2)) ){
segfault = tsk_true;
goto __SEGFAULT;
};
//
// Create FirstList with key-value pairs
//
#if HAVE_CRT //Debug memory
list1_values = (IndexValuePair_t*)calloc(k, sizeof(IndexValuePair_t));
#else
list1_values = (IndexValuePair_t*)tsk_calloc(k, sizeof(IndexValuePair_t));
#endif //HAVE_CRT
if(!list1_values) { segfault = tsk_true; goto __SEGFAULT; };
for(j=0, pos=0; pos<k; j+=2,pos++){
list1_values[pos].index = pos;
GET_2BYTES_VAL((start+j), list1_values[pos].value);
}
/*
* Sort Fisrt List Values
*/
qsort(list1_values, k, sizeof(IndexValuePair_t), SortAscendingPredicate);
/* Sort all lists */
#if HAVE_CRT //Debug memory
list_temp = calloc(k, sizeof(uint32_t));
#else
list_temp = tsk_calloc(k, sizeof(uint32_t));
#endif //HAVE_CRT
if(!list1_values) { segfault = tsk_true; goto __SEGFAULT; };
for(list_index = 0; list_index < n; list_index++){
uint16_t* list_start = (uint16_t*)TCOMP_UDVM_GET_BUFFER_AT( start + (list_index*k*2) );
memcpy(list_temp, list_start, k*2);
for(list_el=0; list_el<k; list_el++){
list_start[(list_el)] = list_temp[ list1_values[list_el].index ];
}
}
__SEGFAULT:
TSK_FREE(list_temp);
TSK_FREE(list1_values);
if(segfault)
{
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT);
return tsk_false;
}
return tsk_true;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>SORT-DESCENDING (%start, %n, %k)</i><br><br>
/// Reference: RFC3320 Section 9.1.3<br>
///
/// This instruction sort lists of 2-byte words in descending order.
///
/// @param [in,out] udvm The udvm state machine entity.
/// @param start The starting memory address of the block of data to be sorted.
/// @param n Number of lists.
/// @param k Lists length (2-byte words).
///
/// @retval True if succeed, otherwise return false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__SORT_DESCENDING(tcomp_udvm_t *udvm, uint32_t start, uint32_t n, uint32_t k)
{
tsk_bool_t segfault = tsk_false;
uint16_t* list_temp = tsk_null;
IndexValuePair_t *list1_values = tsk_null;
uint32_t list_index, list_el;
uint32_t j, pos;
CONSUME_CYCLES(( 1 + k *(CEILLINGLOG2(k) + n) )); // 1 + k * (ceiling(log2(k)) + n)
if(TCOMP_UDVM_GET_SIZE() <= (tsk_size_t)(start+(n*k*2)) ){ segfault = tsk_true; goto __SEGFAULT; };
//
// Create FirstList with key-value pairs.
//
#if HAVE_CRT //Debug memory
list1_values = (IndexValuePair_t*)calloc(k, sizeof(IndexValuePair_t));
#else
list1_values = (IndexValuePair_t*)tsk_calloc(k, sizeof(IndexValuePair_t));
#endif //HAVE_CRT
if(!list1_values) { segfault = tsk_true; goto __SEGFAULT; };
for(j=0, pos=0; pos<k; j+=2,pos++){
list1_values[pos].index = pos;
GET_2BYTES_VAL((start+j), list1_values[pos].value);
}
// Sort Fisrt List Values.
qsort(list1_values, k, sizeof(IndexValuePair_t), SortDescendingPredicate);
// Sort all lists
#if HAVE_CRT //Debug memory
list_temp = calloc(k, sizeof(uint16_t));
#else
list_temp = tsk_calloc(k, sizeof(uint16_t));
#endif //HAVE_CRT
if(!list1_values) { segfault = tsk_true; goto __SEGFAULT; };
for(list_index = 0; list_index < n; list_index++){
uint16_t* list_start = (uint16_t*)TCOMP_UDVM_GET_BUFFER_AT(start + (list_index*k*2));
memcpy(list_temp, list_start, k*2);
for(list_el=0; list_el<k; list_el++){
list_start[(list_el)] = list_temp[ list1_values[list_el].index ];
}
}
__SEGFAULT:
TSK_FREE(list_temp);
TSK_FREE(list1_values);
if(segfault){
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT);
return tsk_false;
}
return tsk_true;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>SHA-1 (%position, %length, %destination)</i><br><br>
/// Reference: RFC3320 Section 9.1.4<br>
/// This instruction calculates a 20-byte SHA-1 hash [RFC-3174] over the specified area of UDVM memory.
///
/// @param [in,out] udvm The udvm state machine entity.
/// @param position The starting memory address.
/// @param length The length of the byte string over which the SHA-1 hash is calculated.
/// @param destination The starting address to which the resulting 20-byte hash will be copied.
///
/// @retval True if succeed, otherwise return false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__SHA_1(tcomp_udvm_t *udvm, uint32_t position, uint32_t length, uint32_t destination)
{
tsk_bool_t ok = tsk_false;
tsk_sha1context_t sha;
int32_t err;
uint8_t Message_Digest[TSK_SHA1_DIGEST_SIZE];
// only check length
// (destination + length) could be > sizeof(udvm_memory) as copying is done byte by byte and could wrap
if(!length){
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT);
goto bail;
}
CONSUME_CYCLES(1 + length);
// The SHA-1 instruction calculates a 20-byte SHA-1 hash [RFC-3174] over the specified area of UDVM memory
if(udvm->tmp_buff.size < length){
if(!(udvm->tmp_buff.ptr = tsk_realloc(udvm->tmp_buff.ptr, length))){
udvm->tmp_buff.size = 0;
goto bail;
}
udvm->tmp_buff.size = length;
}
if(!(ok = tcomp_udvm_bytecopy_from(udvm, udvm->tmp_buff.ptr, position, length))){
goto bail;
}
// Compute SHA-1
if(!(ok = ((err = tsk_sha1reset(&sha)) == 0))){
TSK_DEBUG_ERROR("%s: %d", TCOMP_NACK_DESCRIPTIONS[NACK_INTERNAL_ERROR].desc, err);
tcomp_udvm_createNackInfo2(udvm, NACK_INTERNAL_ERROR);
goto bail;
}
if(!(ok = ((err = tsk_sha1input(&sha, udvm->tmp_buff.ptr, length)) == 0))){
TSK_DEBUG_ERROR("%s : %d", TCOMP_NACK_DESCRIPTIONS[NACK_INTERNAL_ERROR].desc, err);
tcomp_udvm_createNackInfo2(udvm, NACK_INTERNAL_ERROR);
goto bail;
}
if(!(ok = ((err = tsk_sha1result(&sha, (uint8_t*)Message_Digest)) == 0))){
TSK_DEBUG_ERROR("%s : %d", TCOMP_NACK_DESCRIPTIONS[NACK_INTERNAL_ERROR].desc, ok);
tcomp_udvm_createNackInfo2(udvm, NACK_INTERNAL_ERROR);
goto bail;
}
//Copy sha1 result to udvm memory
ok &= tcomp_udvm_bytecopy_to(udvm, destination, Message_Digest, TSK_SHA1_DIGEST_SIZE);
bail:
return ok;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>LOAD(%address, %value)</i><br><br>
/// Reference: RFC3320 Section 9.2.1<br>
/// This instruction sets a 2-byte word to a certain specified value
/// As usual, MSBs are stored before LSBs in the UDVM memory.
///
/// @param [in,out] udvm The udvm state machine entity.
/// @param address Specifies the starting address of a 2-byte word.
/// @param value Specifies the value to be loaded into this word.
///
/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__LOAD(tcomp_udvm_t *udvm, uint32_t address, uint32_t value)
{
CONSUME_CYCLES(1);
if( address >= TCOMP_UDVM_GET_SIZE() ){
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT);
return tsk_false;
}
SET_2BYTES_VAL(address, value);
return tsk_true;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>MULTILOAD(%address, \#n, %value_0, ..., %value_n-1)</i><br><br>
/// Reference: RFC3320 Section 9.2.2<br>
/// This instruction sets a contiguous block of 2-byte words in the UDVM memory to specified values.
/// value_0 through to value_n-1 specify the values to load into these words (in the same order as
/// they appear in the instruction).
///
/// @param [in,out] udvm The udvm state machine entity.
/// @param address Starting address of the contiguous 2-byte words.
/// @param n Number of 2-bytes values to load.
///
/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__MULTILOAD(tcomp_udvm_t *udvm, uint32_t address, uint32_t n)
{
uint32_t index, _address;
uint32_t overlap_start = udvm->last_memory_address_of_instruction;
#define overlap_end udvm->executionPointer
uint32_t write_start = address;
uint32_t write_end = (address + (n << 1));
CONSUME_CYCLES(1 + n);
#define CHECK_MULTILOAD_OVERWRITTEN(__start, __address, __end) \
if(( (__start) <= (__address) && (__address) <= (__end) ) || ( (__start) <= ((__address) + 1) && ((__address) + 1) <= (__end) )){ \
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_MULTILOAD_OVERWRITTEN].desc); \
tcomp_udvm_createNackInfo2(udvm, NACK_MULTILOAD_OVERWRITTEN); \
return tsk_false; \
}
// tcomp_udvm_opget_multitype_param() will move the execPtr => make the test before the for loop
CHECK_MULTILOAD_OVERWRITTEN(overlap_start, address, overlap_end);
CHECK_MULTILOAD_OVERWRITTEN(write_start, udvm->executionPointer, write_end);
for(index = 0, _address = address; index < n; index++ , _address += 2){
uint32_t value_n = tcomp_udvm_opget_multitype_param(udvm);
CHECK_MULTILOAD_OVERWRITTEN(overlap_start, _address, overlap_end);
CHECK_MULTILOAD_OVERWRITTEN(write_start, udvm->executionPointer, write_end);
SET_2BYTES_VAL(_address, value_n);
}
return tsk_true;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>PUSH (%value)</i><br><br>
/// Reference: RFC3320 Section 9.2.3<br>
/// This instruction pushes the value specified by its operand on the stack..
///
/// @date 11/27/2009
///
/// @param [in,out] udvm The udvm state machine entity.
/// @param value 2-byte word to push.
///
/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__PUSH(tcomp_udvm_t *udvm, int16_t value)
{
tsk_bool_t callback = (value>=0);
uint32_t stack_location, stack_fill;
if(!callback){
value = tcomp_udvm_opget_multitype_param(udvm);
}
CONSUME_CYCLES(callback ? 0 : 1);
GET_2BYTES_VAL(TCOMP_UDVM_HEADER_STACK_LOCATION_INDEX, stack_location);
GET_2BYTES_VAL(stack_location, stack_fill);
/*
* copying the value to stack[stack_fill]
* stack[n] = stack_location+2*n+2
*/
SET_2BYTES_VAL((stack_location+(2*stack_fill)+2), value);
/* increasing stack_fill by 1*/
SET_2BYTES_VAL(stack_location, (stack_fill+1));
return tsk_true;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>POP (%address)</i><br><br>
/// Reference: RFC3320 Section 9.2.3<br>
/// This instruction pops a value from the stack and then copies the value to the specified memory address..
///
/// @param [in,out] udvm The udvm state machine entity.
/// @param [in,out] value 2-byte word to pop from the stack.
///
/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__POP(tcomp_udvm_t *udvm, uint32_t* value)
{
uint32_t address;
uint32_t stack_location, stack_fill, _value = 0;
tsk_bool_t callback = (value != 0);
CONSUME_CYCLES(callback?0:1);
address = callback ? 0 : tcomp_udvm_opget_multitype_param(udvm);
GET_2BYTES_VAL(TCOMP_UDVM_HEADER_STACK_LOCATION_INDEX, stack_location);
GET_2BYTES_VAL(stack_location, stack_fill);
/*
* Decompression failure occurs if stack_fill is
* zero at the commencement of a popping operation. POP and RETURN pop
* values from the stack.
*/
if(stack_fill == 0){
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT);
_value = 0;
goto end;
}
/*
* "Popping" a value from the stack is an abbreviation for decreasing
* stack_fill by 1, and then using the value stored in stack[stack_fill].
*/
--stack_fill;
SET_2BYTES_VAL(stack_location, stack_fill);
/* stack[n] = stack_location+2*n+2 */
GET_2BYTES_VAL((stack_location + (2*stack_fill) + 2), _value);
end:
if(callback){
*value = _value;
}
else{
SET_2BYTES_VAL(address, _value);
}
return tsk_true;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>COPY(%position, %length, %destination)</i><br><br>
/// Reference: RFC3320 Section 9.2.4<br>
/// This instruction is used to copy a string of bytes from one part of the UDVM memory to another.
///
/// @param [in,out] udvm The udvm state machine entity.
/// @param position Specifies the memory address of the first byte in the string to be copied.
/// @param length Specifies the number of bytes to be copied.
/// @param destination Gives the address to which the first byte in the string will be copied.
///
/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__COPY(tcomp_udvm_t *udvm, uint32_t position, uint32_t length, uint32_t destination)
{
tsk_bool_t ok = tsk_true;
CONSUME_CYCLES(1+length);
if( (position + length) > (int32_t)TCOMP_UDVM_GET_SIZE() || (destination + length) > (int32_t)TCOMP_UDVM_GET_SIZE() ){
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT);
return tsk_false;
}
/*
* The COPY instruction is used to copy a string of bytes from one part
* of the UDVM memory to another.
*/
ok &= tcomp_udvm_bytecopy_self(udvm, &destination, position, length);
return ok;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>COPY-LITERAL(%position, %length, $destination)</i><br><br>
/// Reference: RFC3320 Section 9.2.5<br>
/// The COPY-LITERAL instruction behaves as a COPY instruction except
/// that after copying is completed, the value of the destination operand
/// is replaced by the address to which the next byte of data would be copied..
///
/// @param [in,out] udvm The udvm state machine entity.
/// @param position Specifies the memory address of the first byte in the string to be copied.
/// @param length Specifies the number of bytes to be copied.
/// @param destination Gives the address to which the first byte in the string will be copied.
///
/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__COPY_LITERAL(tcomp_udvm_t *udvm, uint32_t position, uint32_t length, uint32_t destination)
{
tsk_bool_t ok;
uint32_t destination_index;
CONSUME_CYCLES(1+length);
GET_2BYTES_VAL(destination, destination_index);
ok = tcomp_udvm_bytecopy_self(udvm, &destination_index, position, length);
if(ok){
/* set next byte */
SET_2BYTES_VAL(destination, destination_index);
}
return ok;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>COPY-OFFSET(%offset, %length, $destination)</i><br><br>
/// Reference: RFC3320 Section 9.2.6<br>
/// This instruction behaves as a COPY-LITERAL instruction
/// except that an offset operand is given instead of a position operand..
///
/// @param [in,out] udvm The udvm state machine entity.
/// @param offset The offset value.
/// @param length Specifies the number of bytes to be copied.
/// @param destination Gives the address to which the first byte in the string will be copied.
///
/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__COPY_OFFSET(tcomp_udvm_t *udvm, uint32_t offset, uint32_t length, uint32_t destination)
{
uint32_t DEST, LEFT, RIGTH;
int32_t position = -1;
uint32_t destination_index;
int32_t D, T;
int32_t O;
CONSUME_CYCLES(1+length);
GET_2BYTES_VAL(destination, DEST);
GET_2BYTES_VAL(TCOMP_UDVM_HEADER_BYTE_COPY_LEFT_INDEX, LEFT);
GET_2BYTES_VAL(TCOMP_UDVM_HEADER_BYTE_COPY_RIGHT_INDEX, RIGTH);
/*
DEST: ses
D: distance between LEFT and DEST
O: offset
T: total size between LEFT and RIGTH
[*****
case 1:
-----LEFT--------DEST------------RIGTH----
<-----D---->
<--O->
<---------------T------------>
****]
[*****
case 2:
-----LEFT--------DEST------------RIGTH----
<-----D---->
<--------O-------->
<---------------T------------>
****]
[*****
case 3:
-------DEST-----LEFT-------------RIGTH----
****]
*/
D = (DEST - LEFT);
T = (RIGTH - LEFT);
O = offset;
if( D>=0 && O<=D ){
/* case 1: easy case */
position = (DEST-O);
}
else if( D>=0 && O>D ){
/* case 2: */
double PAD = (D + ((ceil(((double)O-(double)D)/(double)T))*T))-O;
position = LEFT+(int32_t)PAD;
}
else if( D<0 ){
/* case 3: */
position = DEST-O;
}
/* Check position */
if(position<0){
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT);
return tsk_false;
}
/* EXEC_INST__COPY_LITERAL */
GET_2BYTES_VAL(destination, destination_index);
if(tcomp_udvm_bytecopy_self(udvm, &destination_index, position, length) == tsk_true){
SET_2BYTES_VAL(destination, destination_index);
}
else{
return tsk_false;
}
return tsk_true;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>MEMSET(%address, %length, %start_value, %offset)</i><br><br>
/// Reference: RFC3320 Section 9.2.7<br>
/// Formula: Seq[n] := (start_value + n * offset) modulo 256<br>
/// This instruction initializes an area of UDVM memory to a specified sequence of values.
///
/// @date 11/27/2009
///
/// @param [in,out] udvm The udvm state machine entity.
/// @param address The destination address.
/// @param length The number of 1-byte values to set.
/// @param start_value The starting value.
/// @param offset The offset used for computation.
///
/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__MEMSET(tcomp_udvm_t *udvm, uint32_t address, uint32_t length, uint32_t start_value, uint32_t offset)
{
uint8_t* seqs_temp;
uint32_t n;
tsk_bool_t ok;
CONSUME_CYCLES(1+length);
/*
* The values Seq[0] to Seq[length - 1] inclusive are each interpreted
* as a single byte, and then concatenated to form a byte string where
* the first byte has value Seq[0], the second byte has value Seq[1] and
* so on up to the last byte which has value Seq[length - 1].
*/
#if HAVE_CRT //Debug memory
seqs_temp = calloc(length, sizeof(uint8_t));
#else
seqs_temp = tsk_calloc(length, sizeof(uint8_t));
#endif //HAVE_CRT
if(!seqs_temp){
return tsk_false;
}
for(n=0; n < length; n++){
seqs_temp[n] = (start_value + n * offset)%256;
}
/*
* The string is then byte copied into the UDVM memory beginning at the
* memory address specified as an operand to the MEMSET instruction,
* obeying the rules of Section 8.4.
*/
ok = tcomp_udvm_bytecopy_to(udvm, address, seqs_temp, length);
TSK_FREE(seqs_temp);
return ok;
}
/**
* @brief <i>JUMP (\@address)</i><br><br>
* Reference: RFC3320 Section 9.3.1<br>
* This instruction moves program execution to the specified memory address.
* Decompression failure occurs if the value of the address operand lies
* beyond the overall UDVM memory size.
* @param [in,out] udvm The udvm state machine entity.
* @param address defines the address to jump to
* @retval 1 if succeed, otherwise returns 0
*/
tsk_bool_t TCOMP_UDVM_EXEC_INST__JUMP(tcomp_udvm_t *udvm, int16_t address)
{
int callback = (address >=0 );
CONSUME_CYCLES(callback?0:1);
if(!callback){
address = tcomp_udvm_opget_address_param(udvm, udvm->last_memory_address_of_instruction);
}
if(address > (int32_t)TCOMP_UDVM_GET_SIZE()){
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT);
return tsk_false;
}
udvm->executionPointer = address;
return tsk_true;
}
/**
*
* @brief <i>COMPARE(%value_1, %value_2, \@address_1, \@address_2, \@address_3)</i><br><br>
* Reference: RFC3320 Section 9.3.2<br>
*
* This instruction compares two operands and then jumps to one of three specified
* memory addresses depending on the result.<br>
* if(value_1 < value_2) --> address_1<br>
* elif(value_1 = value_2) --> address_2<br>
* elif(value_1 > value_2) --> address_3. <br>
*
*
* @param [in,out] udvm The udvm state machine entity.
* @param value_1 The first value to compare.
* @param value_2 The second value to compare.
* @param address_1 The address to jump to if (value_1 < value_2).
* @param address_2 The address to jump to if (value_1 = value_2).
* @param address_3 address to jump to if (value_1 > value_2).
* @retval 1 if succeed, otherwise returns 0.
**/
tsk_bool_t TCOMP_UDVM_EXEC_INST__COMPARE(tcomp_udvm_t *udvm, uint32_t value_1, uint32_t value_2, uint32_t address_1, uint32_t address_2, uint32_t address_3)
{
tsk_bool_t ok = 1;
CONSUME_CYCLES(1);
if(value_1 < value_2){
ok &= TCOMP_UDVM_EXEC_INST__JUMP(udvm, address_1);
goto end;
}
if(value_1 == value_2){
ok &= TCOMP_UDVM_EXEC_INST__JUMP(udvm, address_2);
goto end;
}
if(value_1 > value_2){
ok &= TCOMP_UDVM_EXEC_INST__JUMP(udvm, address_3);
goto end;
}
end:
return ok;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>CALL(\@address)</i><br><br>
/// Reference: RFC3320 Section 9.3.3<br>
/// This instruction finds the memory address of the instruction immediately following
/// the CALL instruction and pushes this 2-byte value on the stack, ready for later retrieval.
/// It then continues instruction execution at the memory address specified by the address operand..
///
/// @param [in,out] udvm The udvm state machine entity.
/// @param address The next address.
///
/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__CALL(tcomp_udvm_t *udvm, uint32_t address)
{
CONSUME_CYCLES(1);
return TCOMP_UDVM_EXEC_INST__PUSH(udvm, udvm->executionPointer)
&& TCOMP_UDVM_EXEC_INST__JUMP(udvm, address);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>RETURN</i><br><br>
/// Reference: RFC3320 Section 9.3.3<br>
/// This instruction pops a value from the stack and then continues instruction
/// execution at the memory address just popped..
///
/// @param [in,out] udvm The udvm state machine entity.
///
/// @retval True if succeed, otherwise return false .
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__RETURN(tcomp_udvm_t *udvm)
{
uint32_t value = 0;
tsk_bool_t ok = tsk_true;
CONSUME_CYCLES(1);
if( (ok = TCOMP_UDVM_EXEC_INST__POP(udvm, &value)) ){
ok &= TCOMP_UDVM_EXEC_INST__JUMP(udvm, value);
}
return ok;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>SWITCH(\#n, %j, \@address_0, \@address_1, ... , \@address_n-1)</i><br><br>
/// Reference: RFC3320 Section 9.3.4<br>
/// This instruction performs a conditional jump based on the value of one of its operands.
/// Decompression failure occurs if j specifies a value of n or more, or
/// if the address lies beyond the overall UDVM memory size..
/// @param [in,out] udvm The udvm state machine entity.
/// @param n The number of possibilities.
/// @param j The possibility.
///
/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__SWITCH(tcomp_udvm_t *udvm, uint32_t n, uint32_t j)
{
uint32_t next = 0;
tsk_bool_t ok = tsk_true;
CONSUME_CYCLES(1+n);
/* Decompression failure occurs if j specifies a value of n or more. */
if(j >= n){
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SWITCH_VALUE_TOO_HIGH].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_SWITCH_VALUE_TOO_HIGH);
ok = tsk_false;
goto end;
}
do{
next = tcomp_udvm_opget_address_param(udvm, udvm->last_memory_address_of_instruction);
}
while(j--);
end:
if(ok){
ok = TCOMP_UDVM_EXEC_INST__JUMP(udvm, next);
}
return ok;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>CRC(%value, %position, %length, \@address)</i><br><br>
/// Reference: RFC3320 Section 9.3.5<br>
/// This instruction verifies a string of bytes using a 2-byte CRC.
/// The CRC value is computed exactly as defined for the 16-bit FCS calculation in [RFC-1662]..
///
/// @param [in,out] udvm The udvm state machine entity.
/// @param value Contains the expected integer value of the 2-byte CRC.
/// @param position Defines the position of the string of bytes over which the CRC is evaluated.
/// @param length Defines the length of the string of bytes over which the CRC is evaluated.
/// @param address The address to jump to if the calculated CRC value do not match.
///
/// @retval True if succeed, otherwise return false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__CRC(tcomp_udvm_t *udvm, uint32_t value, uint32_t position, uint32_t length, uint32_t address)
{
uint32_t crc_value;
CONSUME_CYCLES(1 + length);
if(udvm->tmp_buff.size < length){
if(!(udvm->tmp_buff.ptr = tsk_realloc(udvm->tmp_buff.ptr, length))){
udvm->tmp_buff.size = 0;
tcomp_udvm_createNackInfo2(udvm, NACK_INTERNAL_ERROR);
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_INTERNAL_ERROR].desc);
return tsk_false;
}
udvm->tmp_buff.size = length;
}
/* copy data */
if(!tcomp_udvm_bytecopy_from(udvm, udvm->tmp_buff.ptr, position, length)){
return tsk_false;
}
/*
* The CRC value is computed exactly as defined for the 16-bit FCS
* calculation in [RFC-1662]
*/
crc_value = tsk_pppfcs16(TSK_PPPINITFCS16, udvm->tmp_buff.ptr, length);
/*
* If the calculated CRC matches the expected value then the UDVM
* continues instruction execution at the following instruction.
* Otherwise the UDVM jumps to the memory address specified by the
* address operand.
*/
if(value != crc_value){
TCOMP_UDVM_EXEC_INST__JUMP(udvm, address);
}
return tsk_true;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>INPUT-BYTES (%length, %destination, \@address)</i><br><br>
/// Reference: RFC3320 Section 9.4.2<br>
/// This instruction requests a certain number of bytes of compressed data from the decompressor dispatcher.
///
/// @param [in,out] udvm The udvm state machine entity.
/// @param length Indicates the requested number of bytes of compressed data.
/// @param destination Specifies the starting memory address to which they should be copied.
/// @param address Defines the address to jump to if the instruction requests data that lies beyond the end of the SigComp message.
///
/// @retval True if succeed, otherwise return false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__INPUT_BYTES(tcomp_udvm_t *udvm, uint32_t length, uint32_t destination, uint32_t address)
{
tsk_bool_t ok = tsk_true;
const uint8_t* compressedDataAddress;
uint8_t* destinationAddress;
CONSUME_CYCLES(1+length);
/*
* If the INPUT-BYTES is encountered after an INPUT-BITS or an INPUT-
* HUFFMAN instruction has been used, and the dispatcher currently holds
* a fraction of a byte, then the fraction MUST be discarded before any
* data is passed to the UDVM. The first byte to be passed is the byte
* immediately following the discarded data.
*/
tcomp_buffer_discardBits(udvm->sigCompMessage->remaining_sigcomp_buffer);
compressedDataAddress = tcomp_buffer_readBytes(udvm->sigCompMessage->remaining_sigcomp_buffer, length);
destinationAddress = TCOMP_UDVM_GET_BUFFER_AT(destination);
if(compressedDataAddress){
ok &= tcomp_udvm_bytecopy_to(udvm, destination, compressedDataAddress, length);
if(ok){
/* FIXME: (8 * n + 1000) * cycles_per_bit */
udvm->maximum_UDVM_cycles += ((8 * length /*+ 1000*/) * udvm->stateHandler->sigcomp_parameters->cpbValue);
}
}
else{
/*
* If the instruction requests data that lies beyond the end of the
* SigComp message, no data is returned. Instead the UDVM moves program
* execution to the address specified by the address operand.
*/
ok &= TCOMP_UDVM_EXEC_INST__JUMP(udvm, address);
}
return ok;
}
/**
*
* @brief <i>INPUT-BITS (%length, %destination, \@address)</i><br><br>
* Reference: RFC3320 Section 9.4.3<br>
* The INPUT-BITS instruction requests a certain number of bits of
* compressed data from the decompressor dispatcher.
*
*
* @param [in,out] udvm The udvm state machine entity.
* @param length The length operand indicates the requested number of bits.
Decompression failure occurs if this operand does not lie between 0
and 16 inclusive.
* @param destination The destination operand specifies the memory address to which the
compressed data should be copied. Note that the requested bits are
interpreted as a 2-byte integer ranging from 0 to 2^length - 1, as
explained in Section 8.2.
* @param address The address of the destination.
*
* @retval 1 if succeed, otherwise returns 0.
**/
tsk_bool_t TCOMP_UDVM_EXEC_INST__INPUT_BITS(tcomp_udvm_t *udvm, uint32_t length, uint32_t destination, uint32_t address)
{
tsk_bool_t ok = tsk_true;
uint32_t input_bit_order, reserved;
uint8_t F_BIT, P_BIT;
uint8_t* old_P_BIT;
/*
The input_bit_order register contains the following three flags:
0 7 8 15
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| reserved |F|H|P| 68 - 69
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*/
CONSUME_CYCLES(1);
GET_2BYTES_VAL(TCOMP_UDVM_HEADER_INPUT_BIT_ORDER_INDEX, input_bit_order);
reserved = (input_bit_order & 0xf8);
/*
* Decompression failure occurs if an INPUT-BITS or an INPUT-HUFFMAN
* instruction is encountered and the input_bit_order register does not
* lie between 0 and 7 inclusive.
*/
if(reserved){
/* MUST BE ZEROS --> Only 3bits --> [0-7] */
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_BAD_INPUT_BITORDER].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_BAD_INPUT_BITORDER);
return tsk_false;
}
/* F and P BITS */
F_BIT = (input_bit_order & 0x0004) ? 1 : 0;
P_BIT = (input_bit_order & 0x0001);
/*
* Decompression failure occurs if this operand (length) does not lie between 0
* and 16 inclusive.
*/
if(/*length<0 ||*/ length>16){
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_INVALID_OPERAND].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_INVALID_OPERAND);
return tsk_false;
}
/*
* P:The P-bit controls the order in which bits are passed from the
* dispatcher to the INPUT instructions
* P=0 --> MSB_TO_LSB
* P=1 --> LSB_TO_MSB
*/
old_P_BIT = tcomp_buffer_getP_BIT(udvm->sigCompMessage->remaining_sigcomp_buffer);
if(*old_P_BIT != P_BIT){
/*
* If the P-bit has changed since the last INPUT instruction, any fraction of a
* byte still held by the dispatcher MUST be discarded (even if the
* INPUT instruction requests zero bits)
*/
tcomp_buffer_discardBits(udvm->sigCompMessage->remaining_sigcomp_buffer);
*old_P_BIT = P_BIT;
}
/*
* If the instruction requests data that lies beyond the end of the
* SigComp message, no data is returned. Instead the UDVM moves program
* execution to the address specified by the address operand.
*/
if( (length) > tcomp_buffer_getRemainingBits(udvm->sigCompMessage->remaining_sigcomp_buffer) ){
ok &= TCOMP_UDVM_EXEC_INST__JUMP(udvm, address);
goto end;
}
/*
* If the F-bit is set to 0, the INPUT-BITS instruction interprets the
* received bits as arriving MSBs first, and if it is set to 1, it interprets the bits as arriving LSBs first.
* F=0 --> MSB_TO_LSB
* F=1 --> LSB_TO_MSB
*/
if(P_BIT == TCOMP_P_BIT_MSB_TO_LSB){
/* MSB_TO_LSB */
uint32_t value = tcomp_buffer_readMsbToLsb(udvm->sigCompMessage->remaining_sigcomp_buffer, length);
if(F_BIT == F_BIT_LSB_TO_MSB){
value = (TSK_BINARY_REVERSE_2BYTE(value)>>(16-length));
}
SET_2BYTES_VAL(destination, value);
}
else{
/* LSB_TO_MSB */
uint32_t value = tcomp_buffer_readLsbToMsb(udvm->sigCompMessage->remaining_sigcomp_buffer, length);
if(F_BIT == F_BIT_LSB_TO_MSB) {
value = (TSK_BINARY_REVERSE_2BYTE(value)>>(16-length));
}
SET_2BYTES_VAL(destination, value);
}
end:
udvm->maximum_UDVM_cycles += (length * udvm->stateHandler->sigcomp_parameters->cpbValue);
return ok;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>INPUT-HUFFMAN(%destination, \@address, \#n, %bits_1, %lower_bound_1, %upper_bound_1, %uncompressed_1, ... , %bits_n, %lower_bound_n, %upper_bound_n, %uncompressed_n)</i><br><br>
/// Reference: RFC3320 Section 9.4.4<br>
///
/// This instruction requests a variable number of bits of compressed data from the decompressor dispatcher. The instruction
/// initially requests a small number of bits and compares the result against a certain criterion; if the criterion is not met, then
/// additional bits are requested until the criterion is achieved.
///
/// @param [in,out] udvm The udvm state machine entity.
/// @param destination The udvm destination address.
/// @param address Address to jump to if data is requested that lies beyond the end of the SigComp message.
/// @param n Additional sets of operands count.
///
/// @retval True if succeed, otherwise return false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__INPUT_HUFFMAN(tcomp_udvm_t *udvm, uint32_t destination, uint32_t address, uint32_t n)
{
/*
The input_bit_order register contains the following three flags:
0 7 8 15
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| reserved |F|H|P| 68 - 69
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*/
tsk_bool_t ok = tsk_true;
uint32_t input_bit_order, reserved;
uint8_t H_BIT, P_BIT, *old_P_BIT;
uint32_t bits_j, lower_bound_j, upper_bound_j, uncompressed_j;
uint32_t bits_total = 0, k = 0, H, J;
tsk_bool_t criterion_ok = tsk_false;
CONSUME_CYCLES(1+n);
/*Note that if n = 0 then the INPUT-HUFFMAN instruction is ignored and
program execution resumes at the following instruction.*/
if(n == 0){
//goto end;
return ok;
}
GET_2BYTES_VAL(TCOMP_UDVM_HEADER_INPUT_BIT_ORDER_INDEX, input_bit_order);
reserved = (input_bit_order & 0xf8);
/*
* Decompression failure occurs if an INPUT-BITS or an INPUT-HUFFMAN
* instruction is encountered and the input_bit_order register does not
* lie between 0 and 7 inclusive.
*/
if(reserved){
/* MUST BE ZEROS --> Only 3bits --> [0-7] */
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_BAD_INPUT_BITORDER].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_BAD_INPUT_BITORDER);
return tsk_false;
}
/* H and P */
H_BIT = (input_bit_order & 0x0002)?1:0;
P_BIT = (input_bit_order & 0x0001);
/*
* P:The P-bit controls the order in which bits are passed from the
* dispatcher to the INPUT instructions
* P=0 --> MSB_TO_LSB
* P=1 --> LSB_TO_MSB
*/
old_P_BIT = tcomp_buffer_getP_BIT(udvm->sigCompMessage->remaining_sigcomp_buffer);
if( *old_P_BIT != P_BIT ){
/*
* If the P-bit has changed since the last INPUT instruction, any fraction of a
* byte still held by the dispatcher MUST be discarded (even if the
* INPUT instruction requests zero bits)
*/
tcomp_buffer_discardBits(udvm->sigCompMessage->remaining_sigcomp_buffer);
*old_P_BIT = P_BIT;
}
/*
* HUFFMAN COMPUTATION
*/
/* 1. Set j := 1 and set H := 0. */
for(J = 1, H = 0; J<=n; J++){
/*
* Request bits_j compressed bits. Interpret the returned bits as an
* integer k from 0 to 2^bits_j - 1, as explained in Section 8.2.
*/
bits_j = tcomp_udvm_opget_multitype_param(udvm);
lower_bound_j = tcomp_udvm_opget_multitype_param(udvm);
upper_bound_j = tcomp_udvm_opget_multitype_param(udvm);
uncompressed_j = tcomp_udvm_opget_multitype_param(udvm);
bits_total += bits_j;
/*Decompression failure occurs if (bits_1 + ... + bits_n) > 16.*/
if(bits_total > 16){
ok = tsk_false;
// FIXME: DECOMPRESSION failure TOO_MANY_BITS_REQUESTED
goto end;
}
if(criterion_ok){
continue;
}
//==step_4:
/*
* 4.If data is requested that lies beyond the end of the SigComp
* message, terminate the INPUT-HUFFMAN instruction and move program
* execution to the memory address specified by the address operand.
*/
if( (bits_j) > tcomp_buffer_getRemainingBits(udvm->sigCompMessage->remaining_sigcomp_buffer) ){
ok &= TCOMP_UDVM_EXEC_INST__JUMP(udvm, address);
goto end;
}
//==step_2:
/*
* 2. Request bits_j compressed bits. Interpret the returned bits as an
* integer k from 0 to 2^bits_j - 1, as explained in Section 8.2.
*/
if(P_BIT == TCOMP_P_BIT_MSB_TO_LSB){
k = tcomp_buffer_readMsbToLsb(udvm->sigCompMessage->remaining_sigcomp_buffer, bits_j);
if(H_BIT == H_BIT_LSB_TO_MSB) {
k = (TSK_BINARY_REVERSE_2BYTE(k)>>(16-bits_j));
}
}
else{
k = tcomp_buffer_readLsbToMsb(udvm->sigCompMessage->remaining_sigcomp_buffer, bits_j);
if(H_BIT == H_BIT_LSB_TO_MSB){
k = (TSK_BINARY_REVERSE_2BYTE(k)>>(16-bits_j));
}
}
//==step_3:
/* 3. Set H := H * 2^bits_j + k */
H = H * (uint32_t)pow(2.0, bits_j) + k;
//==step_5:
/*
* 5. If (H < lower_bound_j) or (H > upper_bound_j) then set j := j + 1.
* Then go back to Step 2, unless j > n in which case decompression
* failure occurs.
*/
if( (H < lower_bound_j) || (H > upper_bound_j) ){
continue;
//goto step_2;
}
else{
/*
* Copy (H + uncompressed_j - lower_bound_j) modulo 2^16 to the
* memory address specified by the destination operand.
*/
H = (H + uncompressed_j - lower_bound_j) % 65536;
criterion_ok = 1;
}
}
if(!criterion_ok){
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_HUFFMAN_NO_MATCH].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_HUFFMAN_NO_MATCH);
ok = tsk_false;
goto end;
}
else if(ok){
SET_2BYTES_VAL(destination, H);
udvm->maximum_UDVM_cycles += (bits_total * udvm->stateHandler->sigcomp_parameters->cpbValue);
}
end:
return ok;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>STATE-ACCESS(%partial_identifier_start, %partial_identifier_length, %state_begin, %state_length, %state_address, %state_instruction)</i><br><br>
/// Reference: RFC3320 Section 9.4.5<br>
/// This instruction retrieves some previously stored state information..
/// @param [in,out] udvm If non-null, the udvm.
/// @param partial_identifier_start Specifies the location of the partial state identifier used to retrieve the state information.
/// @param partial_identifier_length Specifies the length of the partial state identifier used to retrieve the state information.
/// @param state_begin Defines the starting byte to copy from the state_value contained in the returned item of state.
/// @param state_length Defines the number of bytes to copy from the state_value contained in the returned item of state.
/// @param state_address Contains a UDVM memory address.
/// @param state_instruction Next instruction to jump to.
///
/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__STATE_ACCESS(tcomp_udvm_t *udvm, uint32_t partial_identifier_start, uint32_t partial_identifier_length, uint32_t state_begin, uint32_t state_length, uint32_t state_address, uint32_t state_instruction)
{
tcomp_state_t* lpState = NULL;
tcomp_buffer_handle_t* partial_id;
uint32_t match_count;
/*
* Decompression failure occurs if partial_identifier_length does not
* lie between 6 and 20 inclusive.
*/
if(partial_identifier_length<6 || partial_identifier_length>20){
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_INVALID_STATE_ID_LENGTH].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_INVALID_STATE_ID_LENGTH);
return tsk_false;
}
/*
* decompression failure will always occur if the state_length operand
* is set to 0 but the state_begin operand is non-zero.
*/
if(!state_length && state_begin){
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_INVALID_STATE_PROBE].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_INVALID_STATE_PROBE);
return tsk_false;
}
/*
* Find matching state
*/
partial_id = tcomp_buffer_create_null();
tcomp_buffer_referenceBuff(partial_id, TCOMP_UDVM_GET_BUFFER_AT(partial_identifier_start), partial_identifier_length);
match_count = tcomp_statehandler_findState(udvm->stateHandler, partial_id, &lpState);
/*
* Decompression failure occurs if no state item matching the partial state identifier can be found, if
* more than one state item matches the partial identifier.
*/
if(!lpState || match_count != 1){
int32_t nack_code = (match_count > 1) ? NACK_ID_NOT_UNIQUE : NACK_STATE_NOT_FOUND;
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[nack_code].desc);
tcomp_udvm_createNackInfo3(udvm, nack_code, partial_id);
TSK_OBJECT_SAFE_FREE(partial_id);
return tsk_false;
}
else if(partial_identifier_length < lpState->minimum_access_length){
/*
* Decompression failure occurs if partial_identifier_length is less than the minimum_access_length of
* the matched state item.
*/
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_STATE_NOT_FOUND].desc);
tcomp_udvm_createNackInfo3(udvm, NACK_STATE_NOT_FOUND, partial_id);
TSK_OBJECT_SAFE_FREE(partial_id);
return tsk_false;
}
TSK_OBJECT_SAFE_FREE(partial_id);
/*
* If any of the operands state_address, state_instruction or
* state_length is set to 0 then its value is taken from the returned
* item of state instead.
*/
if(!state_address) {
state_address = lpState->address;
}
if(!state_instruction) {
state_instruction = lpState->instruction;
}
if(!state_length) {
state_length = lpState->length;
}
CONSUME_CYCLES(1+state_length);
/* Decompression failure occurs if bytes are copied from beyond the end of the state_value. */
if((tsk_size_t)(state_begin + state_length) > tcomp_buffer_getSize(lpState->value)){
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_STATE_TOO_SHORT].desc);
tcomp_udvm_createNackInfo3(udvm, NACK_STATE_TOO_SHORT, partial_id);
return tsk_false;
}
/*
* The state_address operand contains a UDVM memory address. The
* requested portion of the state_value is byte copied to this memory
* address using the rules of Section 8.4.
*/
if(tcomp_udvm_bytecopy_to(udvm, state_address, tcomp_buffer_getBufferAtPos(lpState->value, state_begin), state_length) != tsk_true){
return tsk_false;
}
/*
* Program execution then resumes at the memory address specified by
* state_instruction, unless this address is 0 in which case program
* execution resumes at the next instruction following the STATE-ACCESS
* instruction.
*/
if(state_instruction){
if(!TCOMP_UDVM_EXEC_INST__JUMP(udvm, state_instruction)){
return tsk_false;
}
}
return tsk_true;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>STATE-CREATE (%state_length, %state_address, %state_instruction, %minimum_access_length, %state_retention_priority)</i><br><br>
/// Reference: RFC3320 Section 9.4.6<br>
/// This instruction requests the creation of a state item at the receiving endpoint..
/// @param [in,out] udvm If non-null, the udvm.
/// @param state_length Defines the length of the state to create.
/// @param state_address Defines the udvm address of the state to create.
/// @param state_instruction Defines the state instruction.
/// @param minimum_access_length Defines the minimun access length.
/// @param state_retention_priority Defines the state retenion priority.
///
/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__STATE_CREATE(tcomp_udvm_t *udvm, uint32_t state_length, uint32_t state_address, uint32_t state_instruction, uint32_t minimum_access_length, uint32_t state_retention_priority)
{
CONSUME_CYCLES(1 + state_length);
/*
* Create temporary state?
*/
if(!tcomp_udvm_createTempState(udvm, state_length, state_address, state_instruction,
minimum_access_length, state_retention_priority, 0)){
return tsk_false;
}
return tsk_true;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i>STATE-FREE(%partial_identifier_start, %partial_identifier_length)</i><br><br>
/// Reference: RFC3320 Section 9.4.7<br>
/// This instruction informs the receiving endpoint that the sender no longer wishes to use a particular state item..
/// @param [in,out] udvm If non-null, the udvm.
/// @param partial_identifier_start Defines the first byte address of partial start identifier.
/// @param partial_identifier_length Defines the partial identifier length.
///
/// @retval True if succeed, otherwise return false .
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__STATE_FREE(tcomp_udvm_t *udvm, uint32_t partial_identifier_start, uint32_t partial_identifier_length)
{
tcomp_tempstate_to_free_t *lpDesc;
CONSUME_CYCLES(1);
/*
* Decompression failure MUST occur if more than four state free
* requests are made before the END-MESSAGE instruction is encountered.
*/
if(tcomp_result_getTempStatesToFreeSize(udvm->lpResult) >=4){
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_TOO_MANY_STATE_REQUESTS].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_TOO_MANY_STATE_REQUESTS);
return tsk_false;
}
/*
* Decompression failure also occurs if partial_identifier_length does
* not lie between 6 and 20 inclusive.
*/
if(partial_identifier_length<6 || partial_identifier_length>20){
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_INVALID_STATE_ID_LENGTH].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_INVALID_STATE_ID_LENGTH);
return tsk_false;
}
lpDesc = tcomp_tempstate_to_free_create();
lpDesc->partial_identifier_length = partial_identifier_length;
lpDesc->partial_identifier_start = partial_identifier_start;
tcomp_result_addTempStateToFree(udvm->lpResult, lpDesc);
/*** Do not ByteCopy data, wait for END_MESSAGE --> see RFC 3320 subclause 9.4.9 **/
return tsk_true;
}
/**
* @brief <i>OUTPUT (%output_start, %output_length)</i><br><br>
* Reference: RFC3320 Section 9.4.8<br>
* This instruction provides successfully decompressed data to the dispatcher.
* @param [in,out] udvm The udvm state machine entity.
* @param output_start defines the starting memory address of the byte string to be provided to the dispatcher
* @param output_length defines the length of the byte string to be provided to the dispatcher
* @retval 1 if succeed, otherwise returns 0
*/
tsk_bool_t TCOMP_UDVM_EXEC_INST__OUTPUT(tcomp_udvm_t *udvm, uint32_t output_start, uint32_t output_length)
{
tsk_bool_t ok;
tsk_size_t *outputbuffer_size;
CONSUME_CYCLES(1+output_length);
outputbuffer_size = tcomp_buffer_getIndexBytes(udvm->lpResult->output_buffer);
if( (*outputbuffer_size + output_length) > 65536 ){
/*
* Decompression failure occurs if the cumulative number of bytes
* provided to the dispatcher exceeds 65536 bytes.
*/
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_OUTPUT_OVERFLOW].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_OUTPUT_OVERFLOW);
return tsk_false;
}
// FIXME: do it once?
if((ok = tcomp_udvm_bytecopy_from(udvm, tcomp_buffer_getBufferAtPos(udvm->lpResult->output_buffer, *outputbuffer_size), output_start, output_length))){
*outputbuffer_size += output_length;
}
#if DEBUG || _DEBUG
//tcomp_buffer_nprint(udvm->lpResult->output_buffer, *outputbuffer_size);
#endif
return ok;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
///
///
/// @brief <i> END-MESSAGE (%requested_feedback_location, %returned_parameters_location, %state_length, %state_address, %state_instruction, %minimum_access_length, %state_retention_priority)</i><br><br>
/// Reference: RFC3320 Section 9.4.9<br>
/// This instruction successfully terminates the UDVM and forwards the state creation and state free requests to the state
/// handler together with any supplied feedback data.
///
/// @param [in,out] udvm Defines the requested feedback location.
/// @param requested_feedback_location The requested feedback location.
/// @param returned_parameters_location Defines the returned parameters location which contains remote party capabilities.
/// @param state_length Length of the state to create.
/// @param state_address UDVM memory address of the state to create.
/// @param state_instruction Defines the state instruction.
/// @param minimum_access_length Defines the state's minimum access length.
/// @param state_retention_priority Determines the order in which state will be deleted when the compartment exceeds its allocated state memory.
///
/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
////////////////////////////////////////////////////////////////////////////////////////////////////
tsk_bool_t TCOMP_UDVM_EXEC_INST__END_MESSAGE(tcomp_udvm_t *udvm, uint32_t requested_feedback_location, uint32_t returned_parameters_location, uint32_t state_length, uint32_t state_address, uint32_t state_instruction, uint32_t minimum_access_length, uint32_t state_retention_priority)
{
tsk_size_t udvm_size;
CONSUME_CYCLES(1+state_length);
udvm_size = TCOMP_UDVM_GET_SIZE();
/*
* Create temporary state provided by END_MESSAGE?
*/
if(!tcomp_udvm_createTempState(udvm, state_length, state_address, state_instruction, minimum_access_length, state_retention_priority, 1)){
return tsk_false;
}
/*
* Byte copy all waiting STATE-FREE/STATE-CREATE/END-MESSAGE states
*/
if(!tcomp_udvm_byteCopy_TempStates(udvm)){
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_INTERNAL_ERROR].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_INTERNAL_ERROR);
return tsk_false;
}
/*
* Feedback has been requested?
*/
if(requested_feedback_location){
uint8_t r_f_l;
if(requested_feedback_location >= udvm_size){
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT);
return tsk_false;
}
/*
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| reserved | Q | S | I | requested_feedback_location
+---+---+---+---+---+---+---+---+
| |
: requested feedback item : if Q = 1
| |
+---+---+---+---+---+---+---+---+
*/
r_f_l = *TCOMP_UDVM_GET_BUFFER_AT(requested_feedback_location);
udvm->lpResult->req_feedback->I = (r_f_l & 0x01);
udvm->lpResult->req_feedback->S = (r_f_l & 0x02) ? 1 : 0;
udvm->lpResult->req_feedback->Q = (r_f_l & 0x04) ? 1 : 0;
requested_feedback_location++; /* skip 1-byte header */
if(udvm->lpResult->req_feedback->Q){
/* we have a requested feedback item */
uint8_t r_f_i = *TCOMP_UDVM_GET_BUFFER_AT(requested_feedback_location);
uint8_t length = 1; /* [1-128] */
if(r_f_i & 0x80){
/* case 2 */
length += (r_f_i & 0x7f); /* seven last bits */
}
if(requested_feedback_location >= TCOMP_UDVM_GET_SIZE()){
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT);
return tsk_false;
}
/* copy from udvm */
// FIXME: use realloc
tcomp_buffer_freeBuff(udvm->lpResult->req_feedback->item);
tcomp_buffer_allocBuff(udvm->lpResult->req_feedback->item, length);
if(!tcomp_udvm_bytecopy_from(udvm, tcomp_buffer_getBuffer(udvm->lpResult->req_feedback->item), requested_feedback_location, length)){
return tsk_false;
}
}
}
//
// SigComp parameters have been returned?
//
if(returned_parameters_location){
uint8_t r_p_l, SigComp_version;
uint32_t index;
tcomp_buffer_handle_t *partial_id;
/*
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| cpb | dms | sms | returned_parameters_location
+---+---+---+---+---+---+---+---+
| SigComp_version |
+---+---+---+---+---+---+---+---+
| length_of_partial_state_ID_1 |
+---+---+---+---+---+---+---+---+
| |
: partial_state_identifier_1 :
| |
+---+---+---+---+---+---+---+---+
: :
+---+---+---+---+---+---+---+---+
| length_of_partial_state_ID_n |
+---+---+---+---+---+---+---+---+
| |
: partial_state_identifier_n :
| |
+---+---+---+---+---+---+---+---+
*/
if(returned_parameters_location >= udvm_size){
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT);
return tsk_false;
}
/* cpb+dms+sms */
r_p_l = *TCOMP_UDVM_GET_BUFFER_AT(returned_parameters_location);
returned_parameters_location++;
if(r_p_l){
tcomp_params_setCpbCode(udvm->lpResult->remote_parameters, ((r_p_l & 0xc0)>>6));
tcomp_params_setDmsCode(udvm->lpResult->remote_parameters, ((r_p_l & 0x38)>>3));
tcomp_params_setSmsCode(udvm->lpResult->remote_parameters, (r_p_l & 0x07));
}
/* sigcomp version */
SigComp_version = *TCOMP_UDVM_GET_BUFFER_AT(returned_parameters_location);
returned_parameters_location++;
if(SigComp_version){
udvm->lpResult->remote_parameters->SigComp_version = SigComp_version;
}
/* state items */
for(index = returned_parameters_location; index <(udvm_size-1); ){
uint8_t length, *length_ptr = TCOMP_UDVM_GET_BUFFER_AT(index);
if(!length_ptr){
return tsk_false;
}
length = *length_ptr; // 1-byte
if(length<6 || length>20){
break;
}
index++;
if((index+length) >= (uint32_t)udvm_size){
TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc);
tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT);
return tsk_false;
}
partial_id = tcomp_buffer_create_null();
tcomp_buffer_allocBuff(partial_id, length);
if(!tcomp_udvm_bytecopy_from(udvm, tcomp_buffer_getBuffer(partial_id), index, length)){
return tsk_false;
}
if(!udvm->lpResult->remote_parameters->returnedStates){
udvm->lpResult->remote_parameters->returnedStates = tsk_list_create();
}
tsk_list_push_back_data(udvm->lpResult->remote_parameters->returnedStates, (void**)&partial_id);
index += length;
}
}
return tsk_true;
}
|