doubango/tinyDAV/src/codecs/g722/g722_encode.c
c732d49e
 #if HAVE_CRT
 #define _CRTDBG_MAP_ALLOC 
 #include <stdlib.h> 
 #include <crtdbg.h>
 #endif //HAVE_CRT
 /*
  * SpanDSP - a series of DSP components for telephony
  *
  * g722_encode.c - The ITU G.722 codec, encode part.
  *
  * Written by Steve Underwood <steveu@coppice.org>
  *
  * Copyright (C) 2005 Steve Underwood
  *
  * All rights reserved.
  *
  *  Despite my general liking of the GPL, I place my own contributions 
  *  to this code in the public domain for the benefit of all mankind -
  *  even the slimy ones who might try to proprietize my work and use it
  *  to my detriment.
  *
  * Based on a single channel 64kbps only G.722 codec which is:
  *
  *****    Copyright (c) CMU    1993      *****
  * Computer Science, Speech Group
  * Chengxiang Lu and Alex Hauptmann
  *
  * $Id: g722_encode.c,v 1.14 2006/07/07 16:37:49 steveu Exp $
  *
  * Modifications for WebRtc, 2011/04/28, by tlegrand:
  * -Removed usage of inttypes.h and tgmath.h
  * -Changed to use WebRtc types
  * -Added option to run encoder bitexact with ITU-T reference implementation
  */
 
 #include <stdio.h>
 #include <memory.h>
 #include <stdlib.h>
 #include "tsk_memory.h"
 
 #include "tinydav/codecs/g722/g722_enc_dec.h"
 
 #if !defined(FALSE)
 #define FALSE 0
 #endif
 #if !defined(TRUE)
 #define TRUE (!FALSE)
 #endif
 
 static __inline int16_t saturate(int32_t amp)
 {
     int16_t amp16;
 
     /* Hopefully this is optimised for the common case - not clipping */
     amp16 = (int16_t) amp;
     if (amp == amp16)
         return amp16;
     if (amp > TDAV_INT16_MAX)
         return  TDAV_INT16_MAX;
     return  TDAV_INT16_MIN;
 }
 /*- End of function --------------------------------------------------------*/
 
 static void block4(g722_encode_state_t *s, int band, int d)
 {
     int wd1;
     int wd2;
     int wd3;
     int i;
 
     /* Block 4, RECONS */
     s->band[band].d[0] = d;
     s->band[band].r[0] = saturate(s->band[band].s + d);
 
     /* Block 4, PARREC */
     s->band[band].p[0] = saturate(s->band[band].sz + d);
 
     /* Block 4, UPPOL2 */
     for (i = 0;  i < 3;  i++)
         s->band[band].sg[i] = s->band[band].p[i] >> 15;
     wd1 = saturate(s->band[band].a[1] << 2);
 
     wd2 = (s->band[band].sg[0] == s->band[band].sg[1])  ?  -wd1  :  wd1;
     if (wd2 > 32767)
         wd2 = 32767;
     wd3 = (wd2 >> 7) + ((s->band[band].sg[0] == s->band[band].sg[2])  ?  128  :  -128);
     wd3 += (s->band[band].a[2]*32512) >> 15;
     if (wd3 > 12288)
         wd3 = 12288;
     else if (wd3 < -12288)
         wd3 = -12288;
     s->band[band].ap[2] = wd3;
 
     /* Block 4, UPPOL1 */
     s->band[band].sg[0] = s->band[band].p[0] >> 15;
     s->band[band].sg[1] = s->band[band].p[1] >> 15;
     wd1 = (s->band[band].sg[0] == s->band[band].sg[1])  ?  192  :  -192;
     wd2 = (s->band[band].a[1]*32640) >> 15;
 
     s->band[band].ap[1] = saturate(wd1 + wd2);
     wd3 = saturate(15360 - s->band[band].ap[2]);
     if (s->band[band].ap[1] > wd3)
         s->band[band].ap[1] = wd3;
     else if (s->band[band].ap[1] < -wd3)
         s->band[band].ap[1] = -wd3;
 
     /* Block 4, UPZERO */
     wd1 = (d == 0)  ?  0  :  128;
     s->band[band].sg[0] = d >> 15;
     for (i = 1;  i < 7;  i++)
     {
         s->band[band].sg[i] = s->band[band].d[i] >> 15;
         wd2 = (s->band[band].sg[i] == s->band[band].sg[0])  ?  wd1  :  -wd1;
         wd3 = (s->band[band].b[i]*32640) >> 15;
         s->band[band].bp[i] = saturate(wd2 + wd3);
     }
 
     /* Block 4, DELAYA */
     for (i = 6;  i > 0;  i--)
     {
         s->band[band].d[i] = s->band[band].d[i - 1];
         s->band[band].b[i] = s->band[band].bp[i];
     }
     
     for (i = 2;  i > 0;  i--)
     {
         s->band[band].r[i] = s->band[band].r[i - 1];
         s->band[band].p[i] = s->band[band].p[i - 1];
         s->band[band].a[i] = s->band[band].ap[i];
     }
 
     /* Block 4, FILTEP */
     wd1 = saturate(s->band[band].r[1] + s->band[band].r[1]);
     wd1 = (s->band[band].a[1]*wd1) >> 15;
     wd2 = saturate(s->band[band].r[2] + s->band[band].r[2]);
     wd2 = (s->band[band].a[2]*wd2) >> 15;
     s->band[band].sp = saturate(wd1 + wd2);
 
     /* Block 4, FILTEZ */
     s->band[band].sz = 0;
     for (i = 6;  i > 0;  i--)
     {
         wd1 = saturate(s->band[band].d[i] + s->band[band].d[i]);
         s->band[band].sz += (s->band[band].b[i]*wd1) >> 15;
     }
     s->band[band].sz = saturate(s->band[band].sz);
 
     /* Block 4, PREDIC */
     s->band[band].s = saturate(s->band[band].sp + s->band[band].sz);
 }
 /*- End of function --------------------------------------------------------*/
 
 g722_encode_state_t *g722_encode_init(g722_encode_state_t *s, int rate, int options)
 {
     if (s == NULL)
     {
         if ((s = (g722_encode_state_t *) malloc(sizeof(*s))) == NULL)
             return NULL;
     }
     memset(s, 0, sizeof(*s));
     if (rate == 48000)
         s->bits_per_sample = 6;
     else if (rate == 56000)
         s->bits_per_sample = 7;
     else
         s->bits_per_sample = 8;
     if ((options & G722_SAMPLE_RATE_8000))
         s->eight_k = TRUE;
     if ((options & G722_PACKED)  &&  s->bits_per_sample != 8)
         s->packed = TRUE;
     else
         s->packed = FALSE;
     s->band[0].det = 32;
     s->band[1].det = 8;
     return s;
 }
 /*- End of function --------------------------------------------------------*/
 
 int g722_encode_release(g722_encode_state_t *s)
 {
     free(s);
     return 0;
 }
 /*- End of function --------------------------------------------------------*/
 
 /* WebRtc, tlegrand:
  * Only define the following if bit-exactness with reference implementation
  * is needed. Will only have any effect if input signal is saturated.
  */
 //#define RUN_LIKE_REFERENCE_G722
 #ifdef RUN_LIKE_REFERENCE_G722
 int16_t limitValues (int16_t rl)
 {
 
     int16_t yl;
 
     yl = (rl > 16383) ? 16383 : ((rl < -16384) ? -16384 : rl);
 
     return (yl);
 }
 #endif
 
 int g722_encode(g722_encode_state_t *s, uint8_t g722_data[],
                 const int16_t amp[], int len)
 {
     static const int q6[32] =
     {
            0,   35,   72,  110,  150,  190,  233,  276,
          323,  370,  422,  473,  530,  587,  650,  714,
          786,  858,  940, 1023, 1121, 1219, 1339, 1458,
         1612, 1765, 1980, 2195, 2557, 2919,    0,    0
     };
     static const int iln[32] =
     {
          0, 63, 62, 31, 30, 29, 28, 27,
         26, 25, 24, 23, 22, 21, 20, 19,
         18, 17, 16, 15, 14, 13, 12, 11,
         10,  9,  8,  7,  6,  5,  4,  0
     };
     static const int ilp[32] =
     {
          0, 61, 60, 59, 58, 57, 56, 55,
         54, 53, 52, 51, 50, 49, 48, 47,
         46, 45, 44, 43, 42, 41, 40, 39,
         38, 37, 36, 35, 34, 33, 32,  0
     };
     static const int wl[8] =
     {
         -60, -30, 58, 172, 334, 538, 1198, 3042
     };
     static const int rl42[16] =
     {
         0, 7, 6, 5, 4, 3, 2, 1, 7, 6, 5, 4, 3, 2, 1, 0
     };
     static const int ilb[32] =
     {
         2048, 2093, 2139, 2186, 2233, 2282, 2332,
         2383, 2435, 2489, 2543, 2599, 2656, 2714,
         2774, 2834, 2896, 2960, 3025, 3091, 3158,
         3228, 3298, 3371, 3444, 3520, 3597, 3676,
         3756, 3838, 3922, 4008
     };
     static const int qm4[16] =
     {
              0, -20456, -12896, -8968,
          -6288,  -4240,  -2584, -1200,
          20456,  12896,   8968,  6288,
           4240,   2584,   1200,     0
     };
     static const int qm2[4] =
     {
         -7408,  -1616,   7408,   1616
     };
     static const int qmf_coeffs[12] =
     {
            3,  -11,   12,   32, -210,  951, 3876, -805,  362, -156,   53,  -11,
     };
     static const int ihn[3] = {0, 1, 0};
     static const int ihp[3] = {0, 3, 2};
     static const int wh[3] = {0, -214, 798};
     static const int rh2[4] = {2, 1, 2, 1};
 
     int dlow;
     int dhigh;
     int el;
     int wd;
     int wd1;
     int ril;
     int wd2;
     int il4;
     int ih2;
     int wd3;
     int eh;
     int mih;
     int i;
     int j;
     /* Low and high band PCM from the QMF */
     int xlow;
     int xhigh;
     int g722_bytes;
     /* Even and odd tap accumulators */
     int sumeven;
     int sumodd;
     int ihigh;
     int ilow;
     int code;
 
     g722_bytes = 0;
     xhigh = 0;
     for (j = 0;  j < len;  )
     {
         if (s->itu_test_mode)
         {
             xlow =
             xhigh = amp[j++] >> 1;
         }
         else
         {
             if (s->eight_k)
             {
                 /* We shift by 1 to allow for the 15 bit input to the G.722 algorithm. */
                 xlow = amp[j++] >> 1;
             }
             else
             {
                 /* Apply the transmit QMF */
                 /* Shuffle the buffer down */
                 for (i = 0;  i < 22;  i++)
                     s->x[i] = s->x[i + 2];
                 s->x[22] = amp[j++];
                 s->x[23] = amp[j++];
     
                 /* Discard every other QMF output */
                 sumeven = 0;
                 sumodd = 0;
                 for (i = 0;  i < 12;  i++)
                 {
                     sumodd += s->x[2*i]*qmf_coeffs[i];
                     sumeven += s->x[2*i + 1]*qmf_coeffs[11 - i];
                 }
                 /* We shift by 12 to allow for the QMF filters (DC gain = 4096), plus 1
                    to allow for us summing two filters, plus 1 to allow for the 15 bit
                    input to the G.722 algorithm. */
                 xlow = (sumeven + sumodd) >> 14;
                 xhigh = (sumeven - sumodd) >> 14;
 
 #ifdef RUN_LIKE_REFERENCE_G722
                 /* The following lines are only used to verify bit-exactness
                  * with reference implementation of G.722. Higher precision
                  * is achieved without limiting the values.
                  */
                 xlow = limitValues(xlow);
                 xhigh = limitValues(xhigh);
 #endif
             }
         }
         /* Block 1L, SUBTRA */
         el = saturate(xlow - s->band[0].s);
 
         /* Block 1L, QUANTL */
         wd = (el >= 0)  ?  el  :  -(el + 1);
 
         for (i = 1;  i < 30;  i++)
         {
             wd1 = (q6[i]*s->band[0].det) >> 12;
             if (wd < wd1)
                 break;
         }
         ilow = (el < 0)  ?  iln[i]  :  ilp[i];
 
         /* Block 2L, INVQAL */
         ril = ilow >> 2;
         wd2 = qm4[ril];
         dlow = (s->band[0].det*wd2) >> 15;
 
         /* Block 3L, LOGSCL */
         il4 = rl42[ril];
         wd = (s->band[0].nb*127) >> 7;
         s->band[0].nb = wd + wl[il4];
         if (s->band[0].nb < 0)
             s->band[0].nb = 0;
         else if (s->band[0].nb > 18432)
             s->band[0].nb = 18432;
 
         /* Block 3L, SCALEL */
         wd1 = (s->band[0].nb >> 6) & 31;
         wd2 = 8 - (s->band[0].nb >> 11);
         wd3 = (wd2 < 0)  ?  (ilb[wd1] << -wd2)  :  (ilb[wd1] >> wd2);
         s->band[0].det = wd3 << 2;
 
         block4(s, 0, dlow);
         
         if (s->eight_k)
         {
             /* Just leave the high bits as zero */
             code = (0xC0 | ilow) >> (8 - s->bits_per_sample);
         }
         else
         {
             /* Block 1H, SUBTRA */
             eh = saturate(xhigh - s->band[1].s);
 
             /* Block 1H, QUANTH */
             wd = (eh >= 0)  ?  eh  :  -(eh + 1);
             wd1 = (564*s->band[1].det) >> 12;
             mih = (wd >= wd1)  ?  2  :  1;
             ihigh = (eh < 0)  ?  ihn[mih]  :  ihp[mih];
 
             /* Block 2H, INVQAH */
             wd2 = qm2[ihigh];
             dhigh = (s->band[1].det*wd2) >> 15;
 
             /* Block 3H, LOGSCH */
             ih2 = rh2[ihigh];
             wd = (s->band[1].nb*127) >> 7;
             s->band[1].nb = wd + wh[ih2];
             if (s->band[1].nb < 0)
                 s->band[1].nb = 0;
             else if (s->band[1].nb > 22528)
                 s->band[1].nb = 22528;
 
             /* Block 3H, SCALEH */
             wd1 = (s->band[1].nb >> 6) & 31;
             wd2 = 10 - (s->band[1].nb >> 11);
             wd3 = (wd2 < 0)  ?  (ilb[wd1] << -wd2)  :  (ilb[wd1] >> wd2);
             s->band[1].det = wd3 << 2;
 
             block4(s, 1, dhigh);
             code = ((ihigh << 6) | ilow) >> (8 - s->bits_per_sample);
         }
 
         if (s->packed)
         {
             /* Pack the code bits */
             s->out_buffer |= (code << s->out_bits);
             s->out_bits += s->bits_per_sample;
             if (s->out_bits >= 8)
             {
                 g722_data[g722_bytes++] = (uint8_t) (s->out_buffer & 0xFF);
                 s->out_bits -= 8;
                 s->out_buffer >>= 8;
             }
         }
         else
         {
             g722_data[g722_bytes++] = (uint8_t) code;
         }
     }
     return g722_bytes;
 }
 /*- End of function --------------------------------------------------------*/
 /*- End of file ------------------------------------------------------------*/