doubango/tinySIGCOMP/src/adler32.c
c732d49e
 #if HAVE_CRT
 #define _CRTDBG_MAP_ALLOC 
 #include <stdlib.h> 
 #include <crtdbg.h>
 #endif //HAVE_CRT
 #if !HAS_ZLIB
 /* adler32.c -- compute the Adler-32 checksum of a data stream
  * Copyright (C) 1995-2004 Mark Adler
  * For conditions of distribution and use, see copyright notice in zlib.h
  */
 
 /* @(#) $Id$ */
 
 #define ZLIB_INTERNAL
 #include "zlib.h"
 
 #define BASE 65521UL    /* largest prime smaller than 65536 */
 #define NMAX 5552
 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
 
 #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
 
 /* use NO_DIVIDE if your processor does not do division in hardware */
 #ifdef NO_DIVIDE
 #  define MOD(a) \
     do { \
         if (a >= (BASE << 16)) a -= (BASE << 16); \
         if (a >= (BASE << 15)) a -= (BASE << 15); \
         if (a >= (BASE << 14)) a -= (BASE << 14); \
         if (a >= (BASE << 13)) a -= (BASE << 13); \
         if (a >= (BASE << 12)) a -= (BASE << 12); \
         if (a >= (BASE << 11)) a -= (BASE << 11); \
         if (a >= (BASE << 10)) a -= (BASE << 10); \
         if (a >= (BASE << 9)) a -= (BASE << 9); \
         if (a >= (BASE << 8)) a -= (BASE << 8); \
         if (a >= (BASE << 7)) a -= (BASE << 7); \
         if (a >= (BASE << 6)) a -= (BASE << 6); \
         if (a >= (BASE << 5)) a -= (BASE << 5); \
         if (a >= (BASE << 4)) a -= (BASE << 4); \
         if (a >= (BASE << 3)) a -= (BASE << 3); \
         if (a >= (BASE << 2)) a -= (BASE << 2); \
         if (a >= (BASE << 1)) a -= (BASE << 1); \
         if (a >= BASE) a -= BASE; \
     } while (0)
 #  define MOD4(a) \
     do { \
         if (a >= (BASE << 4)) a -= (BASE << 4); \
         if (a >= (BASE << 3)) a -= (BASE << 3); \
         if (a >= (BASE << 2)) a -= (BASE << 2); \
         if (a >= (BASE << 1)) a -= (BASE << 1); \
         if (a >= BASE) a -= BASE; \
     } while (0)
 #else
 #  define MOD(a) a %= BASE
 #  define MOD4(a) a %= BASE
 #endif
 
 /* ========================================================================= */
 uLong ZEXPORT adler32(adler, buf, len)
     uLong adler;
     const Bytef *buf;
     uInt len;
 {
     unsigned long sum2;
     unsigned n;
 
     /* split Adler-32 into component sums */
     sum2 = (adler >> 16) & 0xffff;
     adler &= 0xffff;
 
     /* in case user likes doing a byte at a time, keep it fast */
     if (len == 1) {
         adler += buf[0];
         if (adler >= BASE)
             adler -= BASE;
         sum2 += adler;
         if (sum2 >= BASE)
             sum2 -= BASE;
         return adler | (sum2 << 16);
     }
 
     /* initial Adler-32 value (deferred check for len == 1 speed) */
     if (buf == Z_NULL)
         return 1L;
 
     /* in case short lengths are provided, keep it somewhat fast */
     if (len < 16) {
         while (len--) {
             adler += *buf++;
             sum2 += adler;
         }
         if (adler >= BASE)
             adler -= BASE;
         MOD4(sum2);             /* only added so many BASE's */
         return adler | (sum2 << 16);
     }
 
     /* do length NMAX blocks -- requires just one modulo operation */
     while (len >= NMAX) {
         len -= NMAX;
         n = NMAX / 16;          /* NMAX is divisible by 16 */
         do {
             DO16(buf);          /* 16 sums unrolled */
             buf += 16;
         } while (--n);
         MOD(adler);
         MOD(sum2);
     }
 
     /* do remaining bytes (less than NMAX, still just one modulo) */
     if (len) {                  /* avoid modulos if none remaining */
         while (len >= 16) {
             len -= 16;
             DO16(buf);
             buf += 16;
         }
         while (len--) {
             adler += *buf++;
             sum2 += adler;
         }
         MOD(adler);
         MOD(sum2);
     }
 
     /* return recombined sums */
     return adler | (sum2 << 16);
 }
 
 /* ========================================================================= */
 uLong ZEXPORT adler32_combine(adler1, adler2, len2)
     uLong adler1;
     uLong adler2;
     z_off_t len2;
 {
     unsigned long sum1;
     unsigned long sum2;
     unsigned rem;
 
     /* the derivation of this formula is left as an exercise for the reader */
     rem = (unsigned)(len2 % BASE);
     sum1 = adler1 & 0xffff;
     sum2 = rem * sum1;
     MOD(sum2);
     sum1 += (adler2 & 0xffff) + BASE - 1;
     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
     if (sum1 > BASE) sum1 -= BASE;
     if (sum1 > BASE) sum1 -= BASE;
     if (sum2 > (BASE << 1)) sum2 -= (BASE << 1);
     if (sum2 > BASE) sum2 -= BASE;
     return sum1 | (sum2 << 16);
 }
 #endif // HAS_ZLIB