doubango/tinySAK/src/tsk_md5.c
c732d49e
 #if HAVE_CRT
 #define _CRTDBG_MAP_ALLOC 
 #include <stdlib.h> 
 #include <crtdbg.h>
 #endif //HAVE_CRT
 /*
74ca6d11
 * Copyright (C) 2020, University of the Basque Country (UPV/EHU)
c732d49e
 * Contact for licensing options: <licensing-mcpttclient(at)mcopenplatform(dot)com>
 *
 * The original file was part of Open Source Doubango Framework
 * Copyright (C) 2010-2011 Mamadou Diop.
 * Copyright (C) 2012 Doubango Telecom <http://doubango.org>
 *
 * This file is part of Open Source Doubango Framework.
 *
 * DOUBANGO is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * DOUBANGO is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with DOUBANGO.
 *
 */
 
 
 /**@file tsk_md5.c
  * @brief Implements Message-Digest algorithm 5 (RFC 1321).
  *
  * @author Colin Plumb
  * @author Mamadou Diop <diopmamadou(at)doubango[dot]org>
  *
 
  */
 #include "tsk_md5.h"
 
 #include "tsk_string.h"
 
 #include <string.h>
 
 /**@defgroup tsk_md5_group MD5 (RFC 1321) utility functions.
  *	The code in this file is a modified version of an implementation placed in the public domain by the following persons: 
  *	@author Colin Plumb
  *	@author Mamadou Diop <diopmamadou(at)doubango[dot]org>
 */
 
 /**@ingroup tsk_md5_group
 */
 #if defined(_BIG_ENDIAN)
 void tsk_byteReverse(uint32_t *buf, unsigned words)
 {
     uint8_t *p = (uint8_t *)buf;
 
     do{
         *buf++ = (uint32_t)((unsigned)p[3] << 8 | p[2]) << 16 |
                  ((unsigned)p[1] << 8 | p[0]);
         p += 4;
     }
     while (--words);
 }
 #else
 #define tsk_byteReverse(buf,words) /* do nothing*/
 #endif
 
 /**@ingroup tsk_md5_group
  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
  * initialization constants.
  */
 void tsk_md5init(tsk_md5context_t *ctx)
 {
     ctx->buf[0] = 0x67452301;
     ctx->buf[1] = 0xefcdab89;
     ctx->buf[2] = 0x98badcfe;
     ctx->buf[3] = 0x10325476;
 
     ctx->bytes[0] = 0;
     ctx->bytes[1] = 0;
 }
 
 /**@ingroup tsk_md5_group
  * Update context to reflect the concatenation of another buffer full
  * of bytes.
  */
 void tsk_md5update(tsk_md5context_t *ctx, uint8_t const *buf, tsk_size_t len)
 {
     uint32_t t;
 
     /* Update byte count */
 
     t = ctx->bytes[0];
 	if ((ctx->bytes[0] = t + (uint32_t)len) < t)
         ctx->bytes[1]++; 	/* Carry from low to high */
 
     t = 64 - (t & 0x3f); 	/* Space available in ctx->in (at least 1) */
     if (t > len)
     {
         memcpy((uint8_t *)ctx->in + 64 - t, buf, len);
         return ;
     }
     /* First chunk is an odd size */
     memcpy((uint8_t *)ctx->in + 64 - t, buf, t);
     tsk_byteReverse(ctx->in, 16);
     tsk_md5transform(ctx->buf, ctx->in);
     buf += t;
     len -= t;
 
     /* Process data in 64-byte chunks */
     while (len >= 64)
     {
         memcpy(ctx->in, buf, 64);
         tsk_byteReverse(ctx->in, 16);
         tsk_md5transform(ctx->buf, ctx->in);
         buf += 64;
         len -= 64;
     }
 
     /* Handle any remaining bytes of data. */
     memcpy(ctx->in, buf, len);
 }
 
 /**@ingroup tsk_md5_group
  * Final wrapup - pad to 64-byte boundary with the bit pattern 
  * 1 0* (64-bit count of bits processed, MSB-first)
  */
 void tsk_md5final(tsk_md5digest_t digest, tsk_md5context_t *ctx)
 {
     int count = ctx->bytes[0] & 0x3f; 	/* Number of bytes in ctx->in */
     uint8_t *p = (uint8_t *)ctx->in + count;
 
     /* Set the first char of padding to 0x80.  There is always room. */
     *p++ = 0x80;
 
     /* Bytes of padding needed to make 56 bytes (-8..55) */
     count = 56 - 1 - count;
 
     if (count < 0)
     {	/* Padding forces an extra block */
         memset(p, 0, count + 8);
         tsk_byteReverse(ctx->in, 16);
         tsk_md5transform(ctx->buf, ctx->in);
         p = (uint8_t *)ctx->in;
         count = 56;
     }
     memset(p, 0, count);
     tsk_byteReverse(ctx->in, 14);
 
     /* Append length in bits and transform */
     ctx->in[14] = ctx->bytes[0] << 3;
     ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29;
     tsk_md5transform(ctx->buf, ctx->in);
 
     tsk_byteReverse(ctx->buf, 4);
     memcpy(digest, ctx->buf, 16);
     memset(ctx, 0, sizeof(*ctx)); 	/* In case it's sensitive */
 }
 
 /* The four core functions - F1 is optimized somewhat */
 
 /* #define F1(x, y, z) (x & y | ~x & z) */
 #define F1(x, y, z) (z ^ (x & (y ^ z)))
 #define F2(x, y, z) F1(z, x, y)
 #define F3(x, y, z) (x ^ y ^ z)
 #define F4(x, y, z) (y ^ (x | ~z))
 
 /* This is the central step in the MD5 algorithm. */
 #define MD5STEP(f,w,x,y,z,in,s) \
 (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x)
 
 /**@ingroup tsk_md5_group
  * The core of the MD5 algorithm, this alters an existing MD5 hash to
  * reflect the addition of 16 longwords of new data.  MD5Update blocks
  * the data and converts bytes into longwords for this routine.
  */
 void tsk_md5transform(uint32_t buf[4], uint32_t const in[TSK_MD5_DIGEST_SIZE])
 {
     register uint32_t a, b, c, d;
 
     a = buf[0];
     b = buf[1];
     c = buf[2];
     d = buf[3];
 
     MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
     MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
     MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
     MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
     MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
     MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
     MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
     MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
     MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
     MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
     MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
     MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
     MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
     MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
     MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
     MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
 
     MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
     MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
     MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
     MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
     MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
     MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
     MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
     MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
     MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
     MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
     MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
     MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
     MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
     MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
     MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
     MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
 
     MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
     MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
     MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
     MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
     MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
     MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
     MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
     MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
     MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
     MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
     MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
     MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
     MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
     MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
     MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
     MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
 
     MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
     MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
     MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
     MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
     MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
     MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
     MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
     MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
     MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
     MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
     MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
     MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
     MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
     MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
     MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
     MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
 
     buf[0] += a;
     buf[1] += b;
     buf[2] += c;
     buf[3] += d;
 }
 
 
 /**@ingroup tsk_md5_group
  *
  * @brief	Calculate MD5 HASH for @a input data. 
  *
  * @param input	The input data. 
  * @param size	The size of the input data. 
  * @param result MD5 hash result as Hexadecimal string. 
  *
  * @return	Zero if succeed and non-zero error code otherwise. 
 **/
 int tsk_md5compute(const char* input, tsk_size_t size, tsk_md5string_t *result)
 {
 	tsk_md5digest_t digest;
 
 	if(!result | !*result) return -1;
 	
 	(*result)[TSK_MD5_STRING_SIZE] = '\0';
 	
 	TSK_MD5_DIGEST_CALC(input, size, digest);
 	tsk_str_from_hex(digest, TSK_MD5_DIGEST_SIZE, *result);
 
 	return 0;
 }